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ABSTRACT
As the GAN-based face image and video generation techniques,
widely known as DeepFakes, have become more and more ma-
tured and realistic, there comes a pressing and urgent demand for
effective DeepFakes detectors. Motivated by the fact that remote
visual photoplethysmography (PPG) is made possible by moni-
toring the minuscule periodic changes of skin color due to blood
pumping through the face, we conjecture that normal heartbeat
rhythms found in the real face videos will be disrupted or even
entirely broken in a DeepFake video, making it a potentially pow-
erful indicator for DeepFake detection. In this work, we propose
DeepRhythm, a DeepFake detection technique that exposes Deep-
Fakes by monitoring the heartbeat rhythms. DeepRhythm utilizes
dual-spatial-temporal attention to adapt to dynamically changing
face and fake types. Extensive experiments on FaceForensics++
and DFDC-preview datasets have confirmed our conjecture and
demonstrated not only the effectiveness, but also the generaliza-
tion capability of DeepRhythm over different datasets by various
DeepFakes generation techniques and multifarious challenging
degradations.
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• Computing methodologies → Computer vision; • Security
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Figure 1: An example of a real video and its fake video generated by various
manipulations, e.g., DeepFakes, Face2Face, FaceSwap, etc. [57]. It is hard to
decide real/fake via the appearance from a single frame. The state-of-the-art
Xception [9] fails in this case. However, we see that the manipulations easily
diminish the sequential signals representing remote heartbeat rhythms.
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1 INTRODUCTION
Over the past decades, multimedia contents such as image and
video have become more and more prevalent on various social
media platforms. More recently, with the advancement in deep
learning-based image and video generation techniques, i.e., genera-
tive adversarial networks (GAN) [22], anyone can now generate,
e.g., a realistic-looking face that does not exist in the world, or
perform a face swap in a video with a high level of realism. The
latter is what the community refers to as the DeepFake [36–38].
Such a face swap used to require domain expertise such as theatri-
cal visual effects (VFX) and/or high-speed tracking with markers
(e.g., motion captures in the movie Avatar). But now, anyone can
do it easily. The low barriers to entry and wide accessibility of
pre-trained DeepFake generator models are what the problem is.
DeepFakes are now a pressing and tangible threat to the integrity
of multimedia information available to us. DeepFakes, e.g., when
applied on politicians, fueled with targeted misinformation, can
really sway people’s opinions and can lead to detrimental outcomes
such as manipulated and interfered election without people even
knowing about it.
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Therefore, the fight against DeepFakes is currently in dire need.
Although the detection of DeepFakes is a fairly new research fron-
tier, there have been some attempts to spot DeepFake videos. Some
methods are based on traditional digital forensics techniques (see
Section 2.2), while others heavily rely on deep learning-based image
and video classification (real vs. fake) from the raw pixel-domain
DeepFake inputs. However, such detection methods based solely
on the raw pixel-domain input might become less effective when
the DeepFake images and videos become more and more realistic
as the deep image generation methods themselves become more
mature in the near future. Consequently, a fundamentally different
DeepFake detection method is needed.

In this work, we present DeepRhythm, a novel DeepFake detec-
tion technique that is intuitively motivated and is designed from
ground up with first principles in mind. Motivated by the fact that
remote visual photoplethysmography (PPG) [69] is made possible
by monitoring the minuscule periodic changes of skin color due
to blood pumping through the face from a video, we conjecture
that normal heartbeat rhythms found in the real face videos will be
disrupted or even broken entirely in a DeepFake video, making it a
powerful indicator for detecting DeepFakes. As shown in Figure 1,
existing manipulations, e.g., DeepFakes, significantly change the
sequential signals of the real video, which contains the primary in-
formation of the heartbeat rhythm. To further make our proposed
DeepRhythm method work more robustly under various degra-
dations, we have devised and incorporated both a heart rhythm
motion amplification module as well as a learnable spatial-temporal
attention mechanism at various stages of the network model.

Together, through extensive experiments, we have demonstrated
that our conjecture holds true and the proposed method indeed ef-
fectively exposes DeepFakes by monitoring the heartbeat rhythms.
More specifically, DeepRhythm outperforms four state-of-the-art
DeepFake detection methods including Bayer’s method [3], Incep-
tion ResNet V1 [59], Xception [9], and MesoNet [1] in the Face-
Forensics++ benchmark [57] and exhibits high robustness to JPEG
compression, noise, and blur degradations. To the best of our knowl-
edge, this is the very first attempt to expose DeepFakes using heart-
beat rhythms. Our main contributions are summarized as follows:
• We propose DeepRhythm, the very first method for effective
detection of DeepFake with the heartbeat rhythms.

• To characterize the sequential signals of face videos, we propose
the motion-magnified spatial-temporal representation (MMSTR)
that provides powerful discriminative features for high accurate
DeepFake detection.

• To fully utilize the MMSTR, we propose dual-spatial-temporal
attention network to adapt to dynamically changing faces and
various fake types. Experimental results on FaceForensics++ and
DeepFake Detection Challenge-preview dataset demonstrate that
our method not only outperforms state-of-the-art methods but
is robust to various degradations.

2 RELATEDWORK
2.1 DeepFakes Generation
Recently, DeepFake techniques have gained widespread attention
and been used in generating pornographic videos, fake news, and
hoaxes, etc. Some early studies use face-wrap-based methods to

generate fake videos. For example, Bregler et al. [4] track the move-
ment of the speaker’s mouth and morph the input video. Dale et al.
[11] present a video face replacement via a face 3D model. Similarly,
Garrido et al. propose a face warp system while keeping the orig-
inal face performance [18] and a photo-realistically replacement
method via high-quality monocular capture [19]. Thies et al. de-
velop a real-time expression transfer for facial reenactment [61] and
propose the Face2Face method [62] that tracks target and source
facial expressions to build a face 3D model and re-renders source
face on the target model. In addition, Thies et al. [60] further use
neural textures and defer neural render to generate the forgeries.

Besides the above face-wrap-based methods, recent DeepFake
approaches, i.e., PGGAN [36], StyleGAN [37], and StyleGAN2 [38],
employ the generative adversarial network (GAN) [22] for the near-
realistic face synthesis. Moreover, some methods can even alter
face attributes, e.g., changing or removing the color of the hair,
adding glasses or scars [8, 21, 30, 63], and modifying persons’ facial
expression [41]. Overall, GANs have shown great potential in this
area and are easy to use. However, current DeepFake methods, even
those based on GANs, do not explicitly preserve the pulse signal,
inspiring us to capitalize on the pulse signal to distinguish the real
and manipulated videos.

2.2 Forgery and DeepFake Detection
DeepFake detection is challenging since GAN-based DeepFakes can
generate near-realistic faces that are hardly detected even using
the state-of-the-art digital forensics. To alleviate this challenge,
researchers are exploring effective solutions to identify fake videos.

Early attempts focus on detecting forgeries via hand-crafted
features, e.g., [5, 17, 20, 53]. However, these hand-craftedmodels can
be strenuous due to the realistic faces generated by SOTA DeepFake
methods (e.g., FaceApp, Reflect, and ZAO). Later, researchers regard
the DeepFake detection as a classification problem by extracting
discriminative features, e.g., color cues [46], monitoring neuron
behaviors [43–45, 66, 68], and employing classifiers, e.g., support
vector machine (SVM), to tell whether a video is fake or real.

In addition, many researchers also employ SOTA deep neural
networks (DNNs) to detect forgery images. Cozzolino et al. [10] use
residual-based local features and achieve significant performance.
Bayar et al. [3] and Rahmouni et al. [56] propose novel DNNs to
detect manipulated images. Zhou et al. [71] combine a DNN-based
face classification stream with a steganalysis-based triplet stream,
yielding good performance. More recently, researchers are trying
to apply much more complex and advanced DNNs on video forgery
detection, such as Inception-ResNet [59], MesoNet [1], capsule
networks [47], and Xception [9].

Besides only adopting convolutional neural networks (CNNs),
some researchers use a combined recurrent neural network (RNN)
and CNN to extract image and temporal features to distinguish real
and fake videos. For example, Güera et al. [28] use CNN features
to train an RNN to classify videos. Similarly, Sabir et al. [58] use a
sequence of spatio-temporal faces, as RNN’s input to classify the
videos. Furthermore, Dong et al. [12] utilize an attention mecha-
nism to generate and improve the feature maps, which highlight
the informative regions. Different from existing methods, our tech-
nique initiates the first step of leveraging remote heartbeat rhythms



for DeepFake detection. To achieve high detection accuracy, we pro-
pose a motion-magnified representation for the heartbeat rhythms
and employ a spatial-temporal representation to improve the ability
in distinguishing real and fake videos.

2.3 Remote Photoplethysmography (rPPG)
Anti-Spoofing

Face spoof detection is similar to DeepFake detection, aiming to de-
termine whether a video contains a live face. Since the remote heart
rhythm (HR) measuring techniques achieve quite a bit of progress
[2, 6, 35, 39, 54, 55, 69], many works use rPPG for face spoofing de-
tection. For example, Li et al. [40] use the pulse difference between
real and printed faces to defend spoofing attacks. Nowara et al. [49]
compare PPGs of face and background to decide whether the face is
live or not. Heusch et al. [32] use the long-term statistical spectral
on the pulse signals and Hernandez-Ortega et al. [31] employ the
near infrared against realistic artifacts. Moreover, combining with
DNNs, Liu et al. [42] extract spatial and temporal auxiliary infor-
mation, e.g., depth map and rPPG signal, to distinguish whether it
is a live face or spoofing face.

Overall, existing anti-spoofing methods also benefit from em-
ploying rPPG for liveness detection, which seems similar to our
work. However, there are fundamental differences: the liveness
detection mainly relies on the judgment about whether the heart
rhythms exist or not; our work aims to find the different patterns be-
tween real and fake heart rhythms since fake videos may still have
the heart rhythms but their patterns are diminished by DeepFake
methods and are different from the real ones (see Figure 1).

3 METHOD
We propose DeepRhythm (Sec. 3.1) for effective DeepFake detection
by judging whether the normal HR in face videos are diminished.
Figure 2 (a) summarizes the workflow of DeepRhythm.

3.1 DeepRhythm for DeepFake Detection
Given a face video V = {I𝑖 }𝑇𝑖=1 that contains 𝑇 frames, our goal is
to predict if this video is real or fake according to the heart rhythm
signals. To this end, we first develop the motion-magnified spatial-
temporal representation (MMSTR) (Sec. 3.2) for face videos, which can
highlight the heart rhythm signals and output a motion-magnified
spatial-temporal map (MMST map), i.e., X = mmstr(V) ∈ R𝑇×𝑁×𝐶
where 𝑇 is the number of frames, 𝑁 is the 𝑁 region of interest
(ROI) blocks of the face inV (i.e., the regions marked by the blur
grid in Figure 2 (a)), and 𝐶 means the number of color channels.
In the following, we formulate with single color channel for clear
representation but use RGB channels in practice. Intuitively, X
contains the motion-magnified temporal variation of 𝑁 blocks in
the face video, i.e., highlighted heart rhythm signals.

We can simply design a deep neural network that takes the
MMST map as input and predict if the raw video is real. However,
various interference, e.g., head movement, illumination variation,
and sensor noises, may corrupt the MMST map. As a result, the
contributions of different positions in theMMSTmap are not always
the same (e.g., the three patches shown in Figure 2 (a) have different
heart rhythm strength), which definitely affects the fake detection
accuracy. To alleviate this challenge, we should assign different

weights to different positions of the MMST map before further
performing the fake detection

y = 𝜙 (A ⊙ X), (1)

where 𝜙 (·) is a CNN for real/fake classification, ⊙ denotes the
element-wise multiplication, and y is the prediction (i.e., 1 for fake
and 0 for real). The matrix A ∈ R𝑇×𝑁 provides different weights to
different positions of X and is known as an attention mechanism.
We let RGB channels share the attention matrix.

We aim to produce A via a DNN. However, due to the diverse
types of fake and dynamic changing faces, it is difficult to get proper
A for different face directly. We handle this problem by further
decomposing A into two parts, i.e., spatial attention s ∈ R𝑁×1 and
temporal attention t ∈ R𝑇×1, and reformulate Eq. (1) as

y = 𝜙 ((t · s⊤) ⊙ X), (2)

Intuitively, the two attentions indicate when (along the𝑇 ’s axis) and
where (along the 𝑁 ’s axis) of the input MMST map should be used
for better fake detection. Furthermore, the number of parameters of
s and t, i.e., 𝑁 +𝑇 , is much smaller than that of A, i.e., 𝑁 ·𝑇 , which
allows the spatial-temporal-attention to be tuned more easily.

Then, the key problem is how to generate t and s to adapt to
dynamically changing faces and various fake types. In Sec. 3.3,
we propose the dual-spatial-temporal attention network to realize
Eq. (2) by jointly considering prior & adaptive spatial attention and
frame & block temporal attention.

3.2 Motion-Magnified Spatial-Temporal
Representation

A straightforward way of employing heart rate (HR) signals for
DeepFake detection is to use existing HR representations that are
designed for the remote HR estimation. For example, we can use
the spatial-temporal representation (STR) proposed by Niu et al.
[48] for representing HR signals and feed them to a classifier for
DeepFake detection. However, it is hard to achieve high fake detec-
tion accuracy with the STR directly since the differences between
real and fake videos are not highlighted, i.e., STR’s discriminative
power for DeepFake detection is limited.

To alleviate the problem, we propose the motion-magnified STR
(MMSTR) where differences between real and fake face videos can
be effectively represented. Specifically, given in a face video, i.e.,V
having 𝑇 frames, we calculate MMSTR using the following steps:

(i) Calculate landmarks1 of the faces on all frames of V and
remove the eyes and background according to the landmarks,
e.g., the faces shown in the left of Figure 2 (b).

(ii) Perform the motion magnification algorithm [50, 67]2 on the
background removed face video and obtainmotion-magnified
face video with RGB space.

(iii) Divide the face areas of all frames into 𝑁 non-overlapping
ROI blocks, i.e., regions marked by the blue grid in Fig-
ure 2 (b), and perform average pooling on each block and
each color channel for each frame. We then obtain the MMST
map, i.e., X, as the sub-figures shown in the right of Fig-
ure 2 (b). Each row of X represents the motion-magnified

1https://github.com/codeniko/shape_predictor_81_face_landmarks.
2We use its python implementation: https://github.com/flyingzhao/PyEVM.

https://github.com/codeniko/shape_predictor_81_face_landmarks
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Figure 2: The workflow of DeepRhythm, i.e., (a), and its twomainmodules: motion-magnified spatial-temporal representation (MMSTR), i.e., (b), and dual-spatial-
temporal attentional network (Dual-ST AttenNet), i.e., (c). We also highlight the main differences of MMSTRs between real and fake videos in sub-figure (b).

temporal variation of one block on RGB channels, as the red,
green, and blue curves shown in Figure 2 (b).

Figure 2 (b) shows examples of real and fake face videos and their
MMST maps, respectively. We have the following observations: 1)
it is difficult to judge which video is fake just by looking at the raw
frames. 2) differences between the real and fake videos can be easily
found on our MMST maps that will provide effective information
for fake detection. The advantages of MMSTR over STR will be
further discussed in the experimental section.

3.3 Dual-Spatial-Temporal Attentional
Network

In this section, we detail the dual-spatial-temporal attentional net-
work (Dual-ST AttenNet), with which we can realize accurate Deep-
Fake detection through the MMST map and its spatial and temporal
attentions, i.e., t and s defined in Eq. (2).

3.3.1 Dual-Spatial Attention. The dual-spatial attention is

s = sa + sp, (3)

where sp ∈ R𝑁×1 and sa ∈ R𝑁×1 are the prior and face-adaptive
spatial attentions, respectively. The prior attention sp is a fixed
vector whose six specified elements are set as one while others
are zero, which is to extract the HR signals from six specified ROI
blocks and ignore signals from other blocks. The six specified ROI
blocks are the four blocks under eyes and two blocks between eyes,
as shown in Figure 2 (c). The intuition behind this idea is that the

specified blocks are usually robust to various real-world interfer-
ence while the HR signals of other blocks are easily diminished
when unexpected situations happen, e.g., head movement might
let the HR signals of blocks at face boundary disappear.

In addition to the prior spatial attention, we also need face-
adaptive attention, i.e., sa, to highlight different blocks to adapt to
the environment variations since even the same face under different
situations, e.g., the illumination changes, has different effective ROI
blocks. To this end, we propose to train a spatial attention network
to generate adaptive spatial attention, which contains a convolution
layer that has 64 kernels with size being 15 × 1 followed by a batch
normalization layer and max-pooling layer. The CNN’s parameters
are jointly learned with the whole framework.

3.3.2 Dual-Temporal Attention. DeepFake methods usually add
different fake textures at different face locations to different frames,
which not only destroy the smooth temporal variation of a face but
lead to inconsistent fake magnitude among frames (i.e., some frames
contain obvious fake textures while others have few or no fakes).
We propose dual-temporal attention to consider above information

t = tb + tf , (4)

where tb ∈ R𝑇×1 and tf ∈ R𝑇×1 indicate which frames are more
significant for final fake detection. Specifically, we train an LSTM to
represent the temporal variation of a face, which is sequentially fed
with each row of the MMST map, i.e., X, and outputs tb that is de-
noted as the block-level temporal attention. The LSTM’s parameters
are jointly trained with the whole framework.
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Figure 3: Two real-fake video pairs, their MMSTmaps and the colorful differ-
ence maps between real and fake.

To take full advantage of fake textures in each frame, we train
a temporal-attention network that takes each motion-magnified
frame as input and scores the fakeness of the frame independently
and get tf . The frames with higher probability to be fake contribute
more to the final classification and we denote tf as the frame-level
temporal attention. In practice, we use the Meso-4 architecture
[1] as the network containing a sequence of four convolution lay-
ers and two fully-connected layers. The Meso-4’s parameters are
independently trained for frame-level fake detection.

3.3.3 Implementation details. Our dual-spatial-temporal attentional
network is shown in Figure 2 (c) where anMMSTmap, i.e.,X, is first
employed to produce the adaptive spatial attention, i.e., sa and the
block-level temporal attention, i.e., tb, through a spatial attention
network and an LSTM, respectively. The pre-trained Meso-4 is fed
with the motion-magnified face video and outputs the frame-level
temporal attention, i.e., tf . Finally, the attentional MMST map, i.e.,
(t · s⊤) ·X, is fed to the 𝜙 (·) for the final DeepFake detection where
we use ResNet18 [29] for the 𝜙 (·).

We jointly train parameters of the spatial attention network, the
LSTM, and the ResNet18 using the cross-entropy loss with Adam
optimizer. The learning rate and weight decay are set as 0.1 and 0.01
respectively. The max epoch number is set to 500, and training will
stop if validation loss did not decrease in 50 epochs. For training the
Meso-4, we use the same hyper-parameters. We use videos from
FaceForensics++ [57] as the training dataset which is introduced in
Sec. 4.1 and Table 1. Our implementation and results are obtained
on a server with Intel Xeon E5-1650-v4 CPU and NVIDIA GP102L.

4 EXPERIMENTS
4.1 Dataset and Experiment Setting
Dataset.We select FaceForensics++ [57] as our training and testing
datasets, and use DeepFake Detection Challenge preview (DFDC-
preview) [15] as an additional testing dataset to evaluate ourmethod’s
cross-dataset generalization capability.

FaceForensics++ dataset consists of thousands of videos manipu-
lated with different DeepFake methods and contains four fake sub-
datasets, i.e., DeepFake Detection (DFD), DeepFake (DF), Face2Face
(F2F), and FaceSwap (FS). However, the original FaceForensics++
dataset has the data imbalance problem. For example, the original
DFD subset contains 2728 fake videos, but only 268 real videos. To
solve this problem, we make the following improvements: 1) we
augment the the original 268 real videos by flipping them horizon-
tally and get a total of 2,510 real videos. 2) To evaluate our method
on the whole FaceForensics++ dataset, we build an extra dataset, i.e.
‘ALL’ in Table 1, by concatenating the four subsets and augment

Table 1: Details of FaceForensics++ (FF++) and DFDC-preview datasets for
both testing and training

Dataset total real fake train val. test

FF++

DFD 5238 2510 2728 4190 524 524
DF 1959 988 971 1567 195 197
F2F 1966 988 978 1572 196 198
FS 1971 988 983 1582 197 198
ALL 10680 5020 5660 8544 1068 1068

DFDC-preview 3310 578 2732 - - 1000

the real videos by flipping them horizontally and vertically, and ro-
tating them 180 degrees, respectively. Table 1 summarizes the final
four subsets, the ALL dataset, and their partitions about training,
validation, and testing. The dataset partition ratio is 8:1:1 and the
augmented videos are removed in the testing datasets.

For videos in DeepFake Detection Challenge, we directly use
it as the testing set. The details can be found in Table 1. Directly
using the DFDC-preview dataset as testing set will cause imbal-
ance between the number of real and fake videos. So we randomly
sample 500 videos from the real part and 500 videos from the fake
part, and assemble them as the testing set. Then, we test every
method formerly trained on ALL’s training set on it to compare
their performance.

Pre-processing. For every video in the testing and training
datasets, we take the first 300 frames to produce the MMST map.
Specifically, while processing frames, we first use MTCNN [52] to
detect face, and then use Dlib to get 81 facial landmarks [51]. If faces
are not detected in a frame, this frame will be abandoned. If more
than 50 frames were abandoned, this video will not be used to train
the network. If more than one faces were detected in one frame,
the one closer to the faces of previous frames will be retained.

Baseline. We choose the state-of-the-art DeepFake detection
methods, i.e., Bayer’s method [3], Inception ResNet V1 [59], Xcep-
tion [9] and MesoNet [1], as baselines. All of them obtain high
performance on FaceForensics++’s benchmark [13] and are the
top-4 accessible methods therewithin. For Bayer’s method [3], we
do not find publicly available code, so we re-implement it on Keras.
For Inception ResNet V1 [59] and Xception [9], we directly use the
Keras code provided and only add a Dense layer with one neuron af-
ter the final layer to get prediction. As for MesoNet [1], we directly
use the code provided by authors [14].

It should be noted that these baselines perform the fake detection
on an image instead of a video, i.e., estimating if a frame is real or
fake. We make the following adaptations to make them suitable to
address videos: 1) For the testing setup, we use these baselines to
predict every frame of the video and count the number of real or
fake frames. If the real frames are more than fake ones, we identified
this video as real, and vice versa. 2) In terms of the training setup,
we take the first five frames for every training video in the ‘ALL’
dataset in Table 1 and extract their facial region via MTCNN, all of
these faces are divided into training, validation, and testing subsets.
We also employ Adam optimizer with batch-size of 32 and learning
rate of 0.001. The max epoch number is 500, and the training will
stop if validation loss did not decrease in 50 epochs.



Table 2: Comparison with baseline methods on FaceForensics++ and DFDC-preview datasets with the models trained on sub-datasets and ALL dataset of Face-
Forensics++, respectively. We highlight the best and second best results with red and yellow.

train on sub-datasets train on ALL dataset
test on DFD DF F2F FS DFD DF F2F FS ALL DFDC

Bayer and Stamm [3] 0.52 0.503 0.505 0.505 0.501 0.52 0.503 0.505 0.5 0.5
Inception ResNet V1 [59] 0.794 0.783 0.788 0.778 0.919 0.638 0.566 0.462 0.774 0.597

Xception [9] 0.98 0.995 0.985 0.98 0.965 0.984 0.984 0.97 0.978 0.612
MesoNet [1] 0.804 0.979 0.985 0.995 0.958 0.822 0.813 0.783 0.909 0.745

DeepRhythm (ours) 0.987 1.0 0.995 1.0 0.975 0.997 0.989 0.978 0.98 0.641

4.2 Baseline Comparison on Accuracy
We test all methods on DFD, DF, F2F, FS, and ALL subsets (reported
in Table 2) and the DFDC-preview with the models trained on
FF++’s subsets (DFD, DF, F2F, FS, and ALL), respectively.

Results on FaceForensics++. Overall, in Table 2, our Deep-
Rhythm achieves the highest accuracy on all datasets compared
with the baseline methods. First, our method gets better results
than other methods across all cases, regardless of which training
dataset is used. This demonstrates the generalization capability of
our method across various DeepFake techniques. Second, although
we adopt the MesoNet in our framework for the frame-level tempo-
ral attention, our method significantly outperforms the MesoNet on
all cases, e.g., when trained on ALL dataset, DeepRhythm achieves
0.96 on the FS while MesoNet only has 0.719, which validates the
effectiveness of our MMST representation and other attention infor-
mation, and also indicates the potential capability of our framework
for enhancing existing frame-level DeepFake detection methods.
Third, although the baseline method Xception has obtained signif-
icantly high accuracy, e.g., 0.985 and 0.995 on the testing dataset
of F2F and FS, it is still exceeded by our method, confirming the
advantage of our method over the state-of-the-arts. We show two
cases from the FaceForensics++ dataset in Figure 3, where all base-
line methods fail to recognize the fake videos while our method
succeeds. The fake techniques diminish the sequential signal pat-
terns of real videos (e.g., the waveform of the real video in the first
case becomes flat in the fake video), which are effectively captured
by our MMST maps.

Results on DFDC-preview. According to the results on the
DFDC (see Table 2), Bayer’s still performs worse than others, achiev-
ing 0.5 accuracy. Inception ResNet V1 has worse performance than
their results on ALL’s testing set, achieving 0.597. Xception obtains
0.612 accuracy on DFDC-preview, and is also much worse than
its performance on ALL’s testing set. Our DeepRhythm gets 0.641
accuracy and is better than Xception, being the second highest ac-
curacy. Although MesoNet performs not as good on ALL’s testing
set, it achieves the highest accuracy (i.e., 0.745).

4.3 Ablation Study on Accuracy
To demonstrate the effectiveness of our motion-magnified spatial-
temporal representation (MMSTR), dual-spatial-temporal attention
network, and end-to-end training, we conduct an ablation study by
first training the basic model with existing spatial-temporal (ST)
map at the beginning and then add our contributions one by one.

DeepRhythm variants.We first train the bare model (DR-st),
which only uses ST map as its input without motion magnification

Real Video Fake Video

Diff. Real 
& Fake

s : Adapt. a

spatial att.

MMST map of Real Video

MMST map of Fake Video

Diff. MMST map of & Real Fake 

t : Block-level temporal attentionb

Figure 4: An example of a real video, the corresponding fake video, the dif-
ference image between real and fake frames (Diff. Real & Fake), the MMST
maps of real and fake videos, the differencemap between real and fakeMMST
maps (Diff. MMST map of Real & Fake), the adaptive spatial attention (sa, i.e.,
adapt. spatial att.), and the block-level temporal attention (tb).

and attention. Then, we use MMST map as inputs and re-train our
model (denoted as DR-mmst), still not using any attention. After
that, based on the pre-trained DR-mmst, we add adaptive spatial
attention (A) and block-level temporal attention (B), respectively,
(i.e., DR-mmst-A and DR-mmst-B) and perform fine-tuning. After
50 epochs, we observe that the validation loss does not decrease
further. Then, we add prior spatial attention (P) and frame-level
temporal attention (F) on DR-mmst-A and DR-mmst-B, respectively,
then get DR-mmst-AP and DR-mmst-BF that are further fine-tuned.
Next, based on either DR-mmst-AP or DR-mmst-BF, we use four
attentions together (i.e., DR-mmst-APBF) and carry on training.
Finally, we compare DR-mmst-APBF with our final version (i.e.,
DR-mmst-APBF-e2e), where the adaptive spatial attention (A), block-
level temporal attention (B), and the network are jointly or end-
to-end trained. For all the experiments, we use the same hyper-
parameters and datasets, as introduced in Sec. 3.3.3. The results are
summarized in Table 3.

Effectiveness of MMSTR. As shown in Table 3, our MMSTR
significantly improves the DR-st’s accuracy, e.g., 0.328 improvement
on ALL. The ST map from [48] has little discriminative power for
DeepFake detection since DR-st achieves about 0.5 accuracy on ev-
ery testing dataset, which means it randomly guesses a video being
real/fake. After using our MMSTR, DR-mmst achieves 0.217 aver-
aged accuracy increment over DFD, DF, F2F, FS, and ALL datasets.

Effectiveness of single attention. Based on the DR-mmst, we
add adaptive spatial attention (DR-mmst-A) and block-level tem-
poral attention (DR-mmst-B), respectively. These two attentions
do help improve the model’s accuracy, as presented in Table 3
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Figure 5: Frames andMMSTmaps of a video and their four degraded versions
with JPEG, blur, noise, and temporal sampling degradations whose degrees
are 60, 11, 15, and 10, respectively, which are the median values in the x-axis
ranges in Figure 7. Clearly, the JPEG, blur, and noise degradations do not af-
fect the MMST maps of raw videos. The temporal sampling significantly di-
minishes the raw pattern of the MMST maps.

where DR-mmst-A and DR-mmst-B get average 0.061 and 0.0632
improvements over DR-mmst, respectively.

We further show an example of the adaptive spatial attention (sa)
and the block-level temporal attention (tb) in Figure 4. To validate
their effectiveness, we also present the difference image and MMST
map between real and fake cases. From the view of spatial domain,
the difference image indicates that the main changes caused by the
fake is around the nose, which is identical to the estimated adaptive
spatial attention. In terms of the temporal domain, the estimated
temporal attention has high values at the peaks of the difference
MMST map.

Effectiveness of dual-spatial attention. In addition to the
adaptive spatial attention (DR-mmst-A), we further consider the
prior attention where the specified ROI blocks on faces are con-
sidered and realize the DR-mmst-AP. As validated in Table 3, DR-
mmst-AP outperforms DR-mmst-A on all compared datasets and
obtains an average of 0.033 improvement, which demonstrates the
advantage of dual-spatial attention over single adaptive spatial
attention.

Effectiveness of dual-temporal attention. The block-level
temporal attention misses details among frames. To alleviate this
issue, we add the frame-level temporal attention (F) to DR-mmst-B
for the frame-level DeepFake detection and get the DR-mmst-BF. In
Table 3, DR-mmst-BF has much higher accuracy than DR-mmst-B
on all compared datasets. The average improvement is 0.178, which
shows the effectiveness of our dual-temporal attention.

Effectiveness of dual-spatial-temporal attention and end-
to-end training. We put DR-mmst-AP and DR-mmst-BF together
and get DR-mmst-APBF. Compared with DR-mmst-AP, DR-mmst-
APBF has much higher accuracy on all datasets. However, when
comparing it with DR-mmst-BF, DR-mmst-APBF’s accuracy slightly
decreases on DFD, DF, and ALL while increasing on FS dataset.
Though, when we train DR-mmst-APBF in the end-to-end way and
get DR-mmst-SPTM-e2e, it achieves the highest accuracy on all
testing datasets, indicating that training four attention separately
might not mine the potential power of the four attention effectively,
and training them together helps get the maximum effect.

Table 3: Ablation study of DeepRhythm (DR) by progressively adding theMM-
STR, adaptive (A) and prior (P) spatial attentions, block-level (B) and frame-
level (F) temporal attentions, and end-to-end (e2e) training strategy.

train on ALL sub-dataset
test on DFD DF F2F FS ALL
DR-st 0.522 0.497 0.497 0.492 0.512
DR-mmst 0.814 0.684 0.635 0.64 0.84
DR-mmst-A 0.849 0.77 0.736 0.716 0.847
DR-mmst-B 0.872 0.745 0.731 0.731 0.85
DR-mmst-AP 0.879 0.816 0.766 0.756 0.867
DR-mmst-BF 0.97 0.969 0.954 0.959 0.966
DR-mmst-APBF 0.965 0.959 0.954 0.965 0.964
DR-mmst-APBF-e2e 0.972 0.98 0.964 0.959 0.98

4.4 Baseline Comparison on Robustness
In this section, we study the robustness of our method and two base-
line methods, i.e., Xception and MesoNet, which have the highest
accuracy among baselines. Their models are trained on the training
set of the ALL dataset. We consider four general degradations, i.e.,
JPEG compression, Gaussian blur, Gaussian noise, and temporal
sampling, and construct a degradation dataset by manipulating the
testing set of the ALL dataset. For the first three degradations, we
add the corresponding interference to each frame of the tested video
and use the compression quality, blur kernel size, and standard de-
viation of noise to control the degradation degree, respectively. We
show the degradation examples in Figure 5. The temporal sampling
means that we do not use the raw continuous frames to get the
MMST map but select frame at every 𝐾 frames. We use temporal
sampling to test if our method still works under the unsmooth
temporal variation. Please refer to the x-axis in Figure 6 and 7 for
the variation range of each degradation.

As shown in Figure 6, our method exhibits strong robustness on
JPEG compression and Gaussian noise, but do not perform well on
temporal sampling when compared with Xception and MesoNet.
However, we could mitigate the issue with the video frame interpo-
lation techniques, which is yet to be explored as the future work.

4.5 Ablation Study on Robustness
We use the degradation dataset in Sec. 4.4 to analyze the robustness
of MesoNet (i.e., the frame-level temporal attention) and seven
DeepRhythm variants (see the legend of Figure 7). These methods
can be roughly divided into two clusters, one using MesoNet for
the frame-level temporal attention (donated as F-cluster), including
MesoNet, DR-mmst-BF, DR-mmst-APBF, and DR-mmst-APBF-e2e;
the others do not employ the MesoNet (donated as non-F-cluster),
including DR-mmst, DR-mmst-A, DR-mmst-B, and DR-mmst-AP.

As shown in Figure 7, our MMSTR helps the variants, i.e., DR-
mmst, DR-mmst-A, DR-mmst-B, and DR-mmst-AP, to keep at al-
most the same accuracy across all compression quality. The reason
is that the MMSTR is calculated by average pooling pixel values
in ROI blocks, thus is insensitive to local pixel variation caused by
JPEG compression, Gaussian blur, and Gaussian noise. As shown in
Figure 5, the MMST maps of JPEG compressed, noisy, and blurred
videos are almost the same to the raw video. On the other hand,
the MesoNet handles frames independently and relies on detailed
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Figure 2: Baseline Comparison Felix: add stuff, need to be more informative

Table 4: JPEG Compression

Xception MesoNet DeepRhythm
0.67±0.283 0.852±0.133 0.871±0.145

Table 5: Blur

Xception MesoNet DeepRhythm
0.847±0.088 0.843±0.035 0.834±0.072

Table 6: Sampling

Xception MesoNet DeepRhythm
0.978±0.003 0.913±0.007 0.906±0.031

Table 7: Gaussian Noise

Xception MesoNet DeepRhythm
0.336±0.291 0.402±0.271 0.436±0.273
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Figure 3: Ablation Study Felix: add stuff, need to be more informative

Table 8: Gaussian Noise

DR-mmst DR-mmst-A DR-mmst-B DR-mmst-AP MesoNet DR-mmst-BF DR-mmst-APBF DR-mmst-APBF-e2e
JPEG Compression 0.838±0.007 0.836±0.006 0.841±0.006 0.855±0.006 0.852±0.133 0.853±0.146 0.868±0.133 0.871±0.145

Blur 0.843±0.003 0.838±0.004 0.845±0.003 0.856±0.004 0.843±0.035 0.84±0.067 0.832±0.068 0.834±0.072
Sampling 0.762±0.05 0.668±0.103 0.754±0.04 0.688±0.101 0.913±0.007 0.9±0.03 0.897±0.033 0.906±0.031

Gaussian Noise 0.842±0.002 0.834±0.011 0.84±0.006 0.855±0.006 0.402±0.271 0.425±0.274 0.444±0.265 0.436±0.273
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Figure 2: Baseline Comparison Felix: add stuff, need to be more informative

Table 4: JPEG Compression

Xception MesoNet DeepRhythm
0.67±0.283 0.852±0.133 0.871±0.145

Table 5: Blur

Xception MesoNet DeepRhythm
0.847±0.088 0.843±0.035 0.834±0.072

Table 6: Sampling

Xception MesoNet DeepRhythm
0.978±0.003 0.913±0.007 0.906±0.031

Table 7: Gaussian Noise

Xception MesoNet DeepRhythm
0.336±0.291 0.402±0.271 0.436±0.273
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Figure 3: Ablation Study Felix: add stuff, need to be more informative

Table 8: Gaussian Noise

DR-mmst DR-mmst-A DR-mmst-B DR-mmst-AP MesoNet DR-mmst-BF DR-mmst-APBF DR-mmst-APBF-e2e
JPEG Compression 0.838±0.007 0.836±0.006 0.841±0.006 0.855±0.006 0.852±0.133 0.853±0.146 0.868±0.133 0.871±0.145

Blur 0.843±0.003 0.838±0.004 0.845±0.003 0.856±0.004 0.843±0.035 0.84±0.067 0.832±0.068 0.834±0.072
Sampling 0.762±0.05 0.668±0.103 0.754±0.04 0.688±0.101 0.913±0.007 0.9±0.03 0.897±0.033 0.906±0.031

Gaussian Noise 0.842±0.002 0.834±0.011 0.84±0.006 0.855±0.006 0.402±0.271 0.425±0.274 0.444±0.265 0.436±0.273
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Figure 2: Baseline Comparison Felix: add stuff, need to be more informative

Table 4: JPEG Compression

Xception MesoNet DeepRhythm
0.67±0.283 0.852±0.133 0.871±0.145

Table 5: Blur

Xception MesoNet DeepRhythm
0.847±0.088 0.843±0.035 0.834±0.072

Table 6: Sampling

Xception MesoNet DeepRhythm
0.978±0.003 0.913±0.007 0.906±0.031

Table 7: Gaussian Noise

Xception MesoNet DeepRhythm
0.336±0.291 0.402±0.271 0.436±0.273
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Figure 3: Ablation Study Felix: add stuff, need to be more informative

Table 8: Gaussian Noise

DR-mmst DR-mmst-A DR-mmst-B DR-mmst-AP MesoNet DR-mmst-BF DR-mmst-APBF DR-mmst-APBF-e2e
JPEG Compression 0.838±0.007 0.836±0.006 0.841±0.006 0.855±0.006 0.852±0.133 0.853±0.146 0.868±0.133 0.871±0.145

Blur 0.843±0.003 0.838±0.004 0.845±0.003 0.856±0.004 0.843±0.035 0.84±0.067 0.832±0.068 0.834±0.072
Sampling 0.762±0.05 0.668±0.103 0.754±0.04 0.688±0.101 0.913±0.007 0.9±0.03 0.897±0.033 0.906±0.031

Gaussian Noise 0.842±0.002 0.834±0.011 0.84±0.006 0.855±0.006 0.402±0.271 0.425±0.274 0.444±0.265 0.436±0.273
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Table 4: JPEG Compression

Xception MesoNet DeepRhythm
0.67±0.283 0.852±0.133 0.871±0.145

Table 5: Blur
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0.847±0.088 0.843±0.035 0.834±0.072

Table 6: Sampling
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Table 7: Gaussian Noise
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100 90 80 70 60 50 40 30 20 10

0.5

0.6

0.7

0.8

0.9

1

DR-mmst
DR-mmst-A
DR-mmst-B
DR-mmst-AP

------------------------
MesoNet
DR-mmst-BF
DR-mmst-APBF
DR-mmst-APBF-e2e

JPEG Compression

Compression Quality

A
cc

ur
ac

y

(a) JPEG Compression

0 5 10 15 20

0.75

0.8

0.85

0.9

0.95

Blur

Kernel Size Length (pixel)

A
cc

ur
ac

y

(b) Blur

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

1

Sampling

Sampling interval

A
cc

ur
ac

y

(c) Sampling

0 5 10 15 20 25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise

Standard Deviation

A
cc

ur
ac

y

(d) Gaussian Noise

Figure 3: Ablation Study Felix: add stuff, need to be more informative

Table 8: Gaussian Noise
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(d) Gaussian Noise

Figure 6: Baseline comparison on robustness.We performDeepFake detection throughDeepRhythm and two state-of-the-art baselines, i.e., Xception andMesoNet,
on a degradation dataset. Four degradations, i.e., JPEG compression, Gaussian blur, temporal sampling, and Gaussian noise, are added to the testing set of the ALL
dataset. The average accuracy and corresponding standard deviation across all degradation degrees are presented at the bottom of each sub-figure.
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(e) Average accuracy ± standard deviation across degradation degrees

Figure 7: Ablation Study on robustness. We perform DeepFake detection through MesoNet and DeepRhythm’s seven variants on a degradation dataset. The
compared methods are clustered to two types, i.e., F-cluster using MesoNet for frame-level temporal attention (i.e., MesoNet itself, DR-mmst-BF, DR-mmst-APBF,
and DR-mmst-APBF-e2e), and non-F-cluster that does not employ MesoNet (i.e., DR-mmst, DR-mmst-A, DR-mmst-B, and DR-mmst-AP). For each degradation,
the average accuracy and corresponding standard deviation across all degradation degrees are presented at the bottom of figure.

information within frames. As a result, it helps our methods be
robust to temporal sampling and achieve the best performance but
is sensitive to local pixel variation. Clearly, the advantages and
disadvantages of MMSTR and MesoNet are complementary. Our
final version combining these two modules shows comprehensive
robustness across all degradations.

5 CONCLUSIONS
In this work, we have proposed DeepRhythm, a novel DeepFake de-
tection technique. It is intuitively motivated by the fact that remote
visual photoplethysmography (PPG) is made possible bymonitoring
the minuscule periodic changes of skin color due to blood pumping
through the face. Our extensive experiments on FaceForensics++
and DFDC-preview datasets confirm our conjecture that normal
heartbeat rhythms in the real face videos are disrupted in a Deep-
Fake video, and further demonstrate not only the effectiveness
of DeepRhythm, but how it generalizes over different datasets by
various DeepFake generation techniques. One interesting future
direction is to study the combined effort of DeepRhythm with other

DeepFake detectors [33, 34, 65, 66]. Beyond DeepFake detection, 
the investigation of how DeepRhythm can be applied further to 
domains such as countering non-traditional adversarial attacks 
[7, 26, 27, 64] is also potentially viable. In addition, the possibility of 
using tracking methods [16, 23–25, 70] to mine more discriminative 
spatial-temporal features would also be further studied.
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