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ABSTRACT

Robust appearance model is significantly important to state-
of-the-art trackers. However, such trackers highly rely on the
reliability of foreground appearance model. When the fore-
ground is seriously occluded or the scene contains multiple
objects with similar appearance, such foundation is destroyed.
To extend the ability of trackers to handle these difficulties,
we propose selective object and context tracking to locate
the target according to the reliability of the foreground ap-
pearance model which is determined by two measures about
whether the target is occluded or surrounded by similar ob-
jects. Extensive experiments show that our method achieves
better performance than state-of-the-art trackers on VOT TIR-
2015 dataset and is able to track the target even when the fore-
ground appearance is completely unreliable.

Index Terms— Visual tracking, unreliable foreground
appearance model, selective tracking, correlation filters

1. INTRODUCTION

Visual tracking is still a challenging problem in computer
vision. Recently, a lot of trackers [1–8] are proposed and
achieve significant performance improvement on public
datasets [9, 10] via making the best of the foreground appear-
ance model. For example, the correlation filter based trackers,
e.g. kernelized correlation filters (KCF) [11], spatio-temporal
context learning (STC) [12] and spatially regularized corre-
lation filters (SRDCF) [13], can get high tracking accuracy
and real-time performance. As is shown in the first column
of Fig. 1, with foreground appearance model, we get a dis-
criminative confidence map with a very high score at object
location, which helps to track the object accurately. At this
time, the foreground appearance model is defined as reliable.

However, the foreground appearance model becomes un-
reliable when the confidence map is not prominent at tar-
get location. As is shown in the second and third column
of Fig. 1, when the target is seriously occluded or the scene
contains multiple similar objects, the confidence map calcu-
lated by foreground appearance model is less discriminative,
which makes the tracker lose the target easily. Note that, this
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Fig. 1. Each column represents a case with two confidence maps,
i.e. Foreground CM and Context CM, generated by foreground ap-
pearance model and context appearance model, respectively. Green
and blue bounding boxes are the target locations generated by Fore-
ground CM and Context CM, respectively. The red bounding boxes
excluding the green or blue boxes represent the range of context.

problem cannot be solved by simply using a more discrimi-
native feature or a better classifier updating strategy, because
the target may be totally occluded.

In addition to using foreground appearance model, we
show that target context appearance model can also help to
locate the target when foreground appearance model becomes
unreliable. As is shown in Fig. 1, the confidence map calcu-
lated by context appearance model is much more discrimina-
tive than that generated by foreground appearance model.

In this paper, we propose selective object and context
tracking to locate the target. Specifically, we learn two ap-
pearance models by selectively regularizing the foreground
and the context. Then, we propose two measures to judge the
reliability of foreground appearance model w.r.t whether the
target is occluded or surrounded by multiple similar objects.
If the foreground appearance model is unreliable, we use the
context appearance model to track the object. Our method
achieves the best performance on VOT TIR-2015 dataset [14]
comparing with several other state-of-the-art trackers.
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Fig. 2. Algorithm flow of the proposed tracker. Case1: reliable appearance, case2: object occlusion, case3: multiple similar objects.

2. RELATED WORK

Context based trackers. Several works have proposed to use
context information to improve tracking performance [12,15–
17]. Spatio-temporal context learning based tracker (STC) [12]
models the relationship between the target location and its
context and is actually an improved correlation filter based
tracker, whose performance is mainly based on the fore-
ground appearance model and cannot handle serious occlu-
sion or separate multiple similar objects. Other context based
trackers [15–17] use objects in the context to handle occlu-
sion. However, these methods have to firstly select objects
near the target as the helpers to locate the target. They are
more complex than our method and cannot handle the situa-
tion where there exist multiple similar objects in a scene.

Correlation filter based trackers. Correlation filter
based trackers utilize foreground appearance model to train
a filter from a set of training samples {xk, yk}tk=1. They
utilize circular correlation and perform most computations in
the Fourier Domain through Fast Fourier Transform (FFT)
with high efficiency. For example, Bolme et al. proposed
Minimum Output Sum of Squared Error (MOSSE) in [18].
Afterwards, due to the unwanted boundaries produced by
periodic assumption in MOSSE, Danelljan et al. introduces
SRDCF in [13], in the training stage for frame xk, the goal is
to find a function f that minimizes the squared error between
sample xk and regression label yk,

min
fobj

t∑
k=1

αk||
d∑
l=1

xlk ∗ f lobj− yk||2 +
d∑
l=1

||wobj · f lobj||2, (1)

here, the weights αk determine the impact of xk, * and ·
denote circular convolution and element-wise production, re-
spectively, xlk and f lobj denote the l-th channel of sample xk
and correlation filter fobj, respectively. The former part of
Eq. 1 indicates the total squared error; the later part of Eq. 1
introduces the spatial regularization function wobj to penal-
ize the region residing in the background. In detection stage,
by applying the updated filter in image patch, a confidence
map is then computed and maximized to estimate the state of
the target. Afterwards, a d-dimensional feature map mk is

then extracted around the target, and eventually a new sample
(xk, yk) is added into the training set.

These correlation trackers can indeed deal with tracking
problems with high efficiency. However, they are strongly
dependent on foreground appearance model. Therefore, They
are much more likely to fail in complicated situations whose
foreground appearance model is unreliable.

3. THE PROPOSED METHOD

3.1. Overview

We propose selective object and context tracking (SOCT)
for visual tracking. SRDCF [13] is utilized as our base-
line tracker. The proposed tracking framework contains two
parts: detection and updating stage. Updating stage is the
same with [13], thus we mainly focus on detection stage
which is illustrated in Fig. 2. In the first frame, by applying
the newly initialized filter to the image patch we obtain the
confidence map of the target region, by which we train the
Ridge Regression model (details are shown in section 3.3).
Parameter a is initialized as 0 indicating that we use object
spatial regularization. In frame t, a confidence map is firstly
created. Then we use the regression model to judge the re-
liability of foreground appearance model. If the model is
reliable, then object model will predict the target state; if not,
parameter a is then transferred to 1 in order to use context
spatial regularization for tracking (details are shown in 3.2),
we then derive confidence map of the context, afterwards we
use context model to predict the target state. Note that, once
context model is utilized, the filter trained by object model is
set aside to judge whenever object model is reliable again.

3.2. Context Regularization

Discriminative trackers are strongly dependent on foreground
appearance model, thus when it is unreliable, these trackers
often fail. In such situation, we enable context tracking.

The SRDCF tracker introduces a spatial weight function
wobj to penalize the magnitude of its filter coefficients in the
learning according to spatial locations, which is shown in



Eq. 1. When the foreground appearance model is unreliable,
we propose to track the context by penalizing the magnitude
on the opposite way. Specifically, for the region in the cen-
ter, we penalize it by assigning higher weights and vice versa.
When utilizing the context model, the resulting optimization
problem can be expressed as,

min
fcon

t∑
k=1

αk||
d∑
l=1

xlk ∗f lcon−yk||2+
d∑
l=1

||wcon ·f lcon||2, (2)

here, wcon and fcon denote weight function and filter in con-
text tracking, respectively. The generation of context spatial
regularization wcon is as follows. Firstly, calculate the max-
imum and minimum value of weight wobj: max(wobj) and
min(wobj), then

wcon(m,n) = max(wobj) + min(wobj)− wobj(m,n), (3)

here, (m,n) denotes a position in image patch. When the
model is converted to context tracking, context filter fcon is
initialized. The spatial weight function wcon mainly focuses
on the region residing in the background. Additionally, when
in context tracking, the original object tracking filter fcon is
set aside, which contains the object state and waits until reli-
able foreground appearance model occurs again.

3.3. Selective Tracking

The difficulty of our method is how to scale the reliability into
a certain range for judging the reliability of foreground ap-
pearance model. Here, we consider two unreliable situations:
object occlusion and multiple similar objects.

Object occlusion. In the first frame, given bounding box
F , we apply the newly initialized filter to the image patch and
derive the response, i.e. the confidence map in which each
value cij corresponds to a bounding box Bij with the same
size as the target. The overlap ratio between the bounding
box Bij and F can be calculated as,

overlap ratioij =
Bij

⋂
F

Bij
⋃
F
, (4)

Then we consider the Ridge Regression model to train sam-
ples {overlap ratio, response}. The goal of training the
new generated samples is to find a function f(z) = θTz that
minimizes the squared error between samples zi and regres-
sion label gi,

min
θ

∑
i

(f(zi)− gi)2 + η||θ||2, (5)

Here, η denotes the regularization parameter which controls
over fitting, and its close-form solution is given by,

θ = (ZTZ + ηI)−1ZT g, (6)

here, the data matrix Z is composed of zi, and each compo-
nent of g is a regression label gi, I is an identity matrix. We
eventually derive the desired function f(z) = θTz. In each
frame, after utilizing the maximum response into regression
model, the overlap ratio is derived. If the overlap ratio is low
enough, the target is considered to be severely occluded.

Multiple similar objects. In real life, it’s common to see
there are multiple similar objects in a scene, such as lots of
people running in marathon. It’s at times too difficult to di-
vide one person from others in such a big scene. Therefore,
when meeting this situation, we consider tracking the context
with a larger patch than that of the target and then use context
tracking to instruct the original object tracking. By this way,
more information can be extracted from the context patch, and
thus increasing accuracy and robustness. The SRDCF tracker
utilizes spatial regularization to penalize the region residing in
the background, thus if we want to judge whether their exist
similar objects, we should do our work without using spatial
regularization. Afterwards, we calculate the average response
in object and context region respectively. Then, in each frame,
the similar ratio can be derived as,

similar ratio =
avebg
avefg

, (7)

here, avebg and avefg denote the average response of the con-
text region and the image region, respectively. If the simi-
lar ratio is high enough, the target is considered to be sur-
rounded with multiple similar objects.

4. EXPERIMENTS

4.1. Setup

In this section, we evaluate our tracker on benchmark VOT
TIR-2015 with 20 challenging TIR video sequences. Chal-
lenging factors include motion change, camera change, dy-
namics change, occlusion and size change. TIR itself is
challenging due to lack of enough appearance informa-
tion and it is more likely for TIR data meeting unreli-
able appearance. Therefore, we use TIR to evaluate our
tracker. Weight function wcon is generated by function
wcon(m,n) = µ+ η(m/R)2 + η(n/C)2 in which R×C de-
notes target size, µ and η is set 0.1 and 3 respectively. Thresh-
olds of overlap ratio and similar ratio are set to 0.55 and 0.6,
respectively. Other parameters are the same as the baseline
tracker, readers can refer to [13]. We compare our method
with 11 state-of-the-art tracking methods: SRDCF [13],
NSMAF [19], scalable kernel correlation filter with sparse
feature integration (sKCF) [20], multi-channel Multiple-
Instance-Learning tracker (CMIL) [21], restore point guided
kernelized correlation filter (KCFv2) [21], spatio-temporal
context tracker (STC) [12], SumShift tracker [22], geomet-
ric structure Hyper-Graph based tracker (G2T) [21], flock
of trackers (FoT) [23], point-based Kanade Lukas Tomasi
colorFilter (PKLTF) [24], ASMS [25].
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Fig. 3. Some tracking results comparison between SOCT (blue box) and SRDCF (green box).

Table 1. AR rank and overlap of 11 trackers on VOT TIR-2015 dataset. Smaller rank and bigger overlap are better.

ASMS PKLTF FoT G2T SumShift STC KCFv2 CMIL sKCF NSAMF SRDCF SOCT
Accuracy 4.35 5.80 6.60 5.05 3.40 3.85 5.05 3.85 3.70 3.45 3.05 2.65

Robustness 5.80 6.00 8.85 6.05 3.25 6.70 5.35 5.00 4.20 3.45 2.75 2.20
Overlap 0.1179 0.1369 0.1486 0.1548 0.1688 0.1950 0.1998 0.2190 0.2264 0.2382 0.2502 0.2616
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Fig. 4. The AR plots by sequence pooling. It considers the results
from all sequences and thus derives a single rank list. Trackers in
top right are considered to be better.

We use two measures to evaluate the performance of the
above methods: accuracy and robustness. The accuracy mea-
surement measures the overlap ratio between the estimated
bounding box and the ground truth; while the robustness mea-
surement measures how many times the tracker fails to track
the object. Specifically, robustness is scaled by calculating
the probability of tracker failing after S frames.

4.2. Advantages of context spatial regularization

Current datasets contain few related videos, thus we collect
some videos to evaluate our tracker. These videos mostly con-
tain occlusion or multiple similar objects. The comparison
results are shown in Fig. 3. In sequence Rabbit, both trackers
can track the third rabbit in the beginning. However, when
the camera motion is fast enough, SRDCF tracks the left first
rabbit instead of the third one while our tracker can still track
it. In sequence Lemming, Card, bottle and hiding, when the
targets are occluded, SRDCF keeps staying in the occlusion

position while our tracker is able to track them when the ob-
jects show up again. Our approach outperforms the SRDCF
tracker with performance improvement, especially for videos
with occlusion or multiple similar objects.

4.3. Comparison to state-of-the-arts

We compare our approach with 11 methods and fix the param-
eters in VOT TIR-2015. The results are shown in Fig. 4 and
Tab. 1. In Fig. 4, SOCT keeps in the most top-right indicating
the best performance. In Tab. 1, in accuracy and robustness
rank we get the best: 2.65 and 2.20, and in overlap we get the
highest 0.2616, followed by SRDCF 0.2502. These results
show that our method achieves better performance than state-
of-the-arts by introducing context model. Besides, the speed
of SRDCF and SOCT is about 3fps and 2fps, respectively,
showing that our tracker can still operate in real time.

5. CONCLUSION

In this paper, we have proposed selective object and context
tracking to handle unreliable foreground appearance model.
Our method achieves the best performance on the VOT TIR-
2015 dataset comparing with several state-of-the-art trackers.
In the first place, we use the proposed two measures to eval-
uate the reliability of the foreground appearance model based
on its confidence map. Then, the context appearance model
is selectively learnt and used to track the object according to
the reliability of foreground appearance model. In our future
work, we will extend our method to adapt other trackers and
make it be a general strategy to achieve more robust perfor-
mance. Besides, we will construct a classifier to replace the
two measures to realize more accurate judgment.
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