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In this supplementary, we first add three important interpretations of our Dynamic Siamese network, which elaborates the
details of network architecture and training implementation. Then, we validate the effective of proposed training strategy and
online transformations.

1. Dynamic Siamese Network
We train our dynamic Siamese (DSiam) network on ILSVRC-2015 video dataset that has no overlap with popular bench-

marks [1]. Thus, there is no overfitting risk to train DSiam network. Furthermore, We can construct DSiam network on multi
layers of any feasible generally- or particularly-trained CNNs.

1.1. Multi-layer network architecture

We have shown and introduced DSiam network on single layer in our submitted manuscript. Here, we show the multi-
layer DSiam in Fig. 1. To make it easy to understand, we denote four main parts of single-layer DSiam as ‘var’, ‘Lvar’, ‘sup’
and ‘Lsup’. As shown in left subfigure of Fig. 1, ‘var’ means the target appearance variation transformation, i.e. T̃ = V ∗T;
‘sup’ denotes the background suppression transformation, i.e. F̃z = W ∗ Fz; ‘Lvar’ and ‘Lsup’ represent processes of
learning V and W, respectively. For two-layer DSiam, each layer is equipped with the four parts, i.e. ‘var’, ‘Lvar’, ‘sup’
and ‘Lsup’, as shown in the right subfigure of Fig. 1 and produces a response map Sl1 or Sl2 . Then, two response maps are
fused via an elementwise fusion layer denoted as ‘Elefusion’ and defined as,

S =
∑

l∈{l1,l2}

Υl � Sl, (1)

where
∑
l∈{l1,l2}Υl = 1. Υl is learnt through joint training.

Dynamic Siamese network shown in Fig. 1 is actually a tracking process. Thus, to training such network is to find a good
tracker. Specifically, at the beginning, the first frame I1 is cropped to get the target template O1 that is resized to 127× 127
via ‘Crop’ layer. Then, we extract deep features of O1 and get f l1(O1) and f l2(O1). Here, we use the SiamFC as the
neural network with l1 and l2 being conv5 and conv4, respectively. Note, our framework could also utilize other networks,
as demonstrated in experiment part, DSiam could also get good performance with pre-trianed Vgg19 network. At frame t,
an input frame It passes through ‘Crop’ layer and is cropped to get a search region, i.e. Zt, that is centered at the maximum
value of St−1 and is resized to 255 × 255. Then, we get f l1(Zt) and f l2(Zt) and transform these two deep features through
background suppression transformations, i.e. ‘sup’ in Fig. 1. Meanwhile, f l1(O1) and f l2(O1) are transformed through target
appearance variation transformation, i.e. ‘var’ in Fig. 1. The transformed deep features of O1 and Zt are used to perform
correlation and get the response maps Sl1 and Sl2 , which are fused via Eq. (1) and get St. After tracking, we can use St to
get target template at frame t, i.e. Ot, and region Gt centered at Ot but having the same size with Zt. Then, we get Ḡt that
mainly contain the target by multiplying Gt with a Gaussian weight map via ‘Eltwise’ layer. With deep features of Ot and
O1, we learn the V via ‘Lvar’ in Fig. 1. With deep features of G and Ḡ, we learn the W via ‘Lsup’ in Fig. 1.

1.2. Back propagation of new layers

In following, we introduce how to propagate gradients w.r.t. Loss in new layers appeared in DSiam, including RLR layer,
CirConv layer, Elefusion layer and Crop layer.
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Figure 1. Dynamic Siamese networks. Left subfigure shows the DSiam on single layer, in which we use four abbreviations to denote four
processes. ‘var’ represents the target appearance variation transformation, i.e. T̃ = V ∗ T; ‘Lvar’ denotes process of learning variation
transformation, i.e. V; ‘sup’ is the background suppression transformation, i.e. F̃z = W ∗ Fz; ‘Lsup’ denotes the process of learning
background suppression transformation, i.e. W. Right subfigure shows the DSiam on two layers. Each layer is equipped with four
processes denoted above to produce a response map. Then, two response maps are fused through an elementwise fusion layer denoted by
‘Eltfusion’.

For RLR and CirConv layers, we use vector as an example which can be extended to tensor case. Given two vectors
X ∈ <n×1 and Y ∈ <n×1, we aim to calculate a transformation matrix R ∈ <n×1 to make X similar to Y, i.e.

Y = R ∗X, (2)

where ‘∗’ is the circular convolution. Thus, Eq. (2) is denoted as the CirConv layer. R can be solved by

R = arg min
R

‖R ∗X−Y‖2 + λ‖R‖2, (3)

where λ is to control the regularization degree and is regarded as a parameter during training. Thus, Eq. (3) represents the
RLR layer.

Gradients of CirConv layer
Considering Eq. (2), during back propagation, given ∇YL, we aim to calculate∇XL and ∇RL, respectively.
For ∇XL, we can write it as

∇XL = (
∂Y

∂X
)T∇YL, (4)

where ∂Y
∂X ∈ <

n×n is the Jacobian matrix. Furthermore, we can rewrite the circular convolution as matrix multiplication
form and get

Y = R ∗X = C(X)TR = C(R)TX, (5)

where C(X) is to output a circulant matrix each row of which is the shift version of X. Then, we can get

∂Y

∂X
= C(R)T. (6)

Thus, we have
∇XL = C(R)∇YL. (7)

Considering the fact that all circulant matrices can be diagonalized by the Discrete Fourier Transform (DFT), C(R) can be
expressed as

C(R) = Fdiag(R̂)FH, (8)
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where F is a constant matrix which is irrelevant to R, R̂ denotes the DFT of R, and we have R̂ = F (R) and F (R) =√
nFR Eq. 4 is equivalent to

FH∇XL = FH(Fdiag(R̂)FH)∇YL

= FHFdiag(R̂)FH∇YL

= diag(R̂)FH∇YL,

(9)

afterwards, by simple algebra as follows

(FH∇XL)H = (diag(R̂)FH∇YL)H,

(∇XL)HF = (∇YL)HFdiag(R̂),

(∇XL)TF = (∇YL)TFdiag(R̂),

((∇XL)TF)T = ((∇YL)TFdiag(R̂))T,

F∇XL = diag(R̂)F∇YL.

(10)

Hence, Eq. 9 is equivalent to
∇̂XL = diag(R̂)∇̂YL. (11)

We may go one step further, since the product of a diagonal matrix and a tensor is just their element-wise product,

∇̂XL = R̂� ∇̂YL, (12)

where ∇̂XL denotes the fourier form of∇XL.
Finally, we get∇XL

∇XL = F−1(∇̂XL). (13)

Similarly, we can also get ∇̂RL and ∇RL,
∇̂RL = X̂� ∇̂YL

∇RL = F−1(∇̂YL).
(14)

The gradient results of ∇RL and ∇XL in our submitted manuscript are represented in a wrong way. Eq. (14) and Eq. (13)
should be the final results.

Gradients of RLR layer
When the above ‘*’ circulant product, Eq. 3 has a close-form solution as follows,

R = (C(X)HC(X) + λI)−1C(X)HY, (15)

where I denotes the identity matrix.
Considering Eq. 15, during back propagation, given∇RL, we aim to calculate∇XL, ∇YL and∇λL.
For∇XL, we can write it as

∇XL = (
∂X̂

∂X
)T∇X̂L

=
√

nF∇X̂L

=
√

nF(
∂R̂

∂X̂
)T∇R̂L

=
√

nF(
∂R̂

∂X̂
)T

1√
n

FH∇RL

= F(
∂R̂

∂X̂
)TFH∇RL,

(16)

where F is a constant matrix, X̂ denotes the DFT of X, and we have X̂ = F (X) =
√
nFX.
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For ∂R̂
∂X̂

, similar to Eq. 9, we can get

R̂ =
X̂? � Ŷ

X̂? � X̂ + λ
. (17)

We then set X̂ = a + bi where a,b ∈ <n×1, thus Eq. 17 can be written as

R̂ =
(a− bi)� Ŷ

a2 + b2 + λ
. (18)

Then we can get
∂R̂

∂a
= diag(−2a� (a− bi)� Ŷ

(a2 + b2 + λ)2
+

Ŷ

a2 + b2 + λ
),

∂R̂

∂b
= diag(−2b� (a− bi)� Ŷ

(a2 + b2 + λ)2
− Ŷi

a2 + b2 + λ
),

(19)

afterwards,
∂R̂

∂X̂
= (

∂a

∂X̂
)T
∂R̂

∂a
+ (

∂b

∂X̂
)T
∂R̂

∂b

=
∂R̂

∂a
− ∂R̂

∂b
i

= −2diag(
(a− bi)� (a− bi)� Ŷ

(a2 + b2 + λ)2
)

= −2diag(
(X̂?)2 � Ŷ

(X̂? � X̂ + λ)2
).

(20)

Thus, ∇XL can be achieved by Eq. 16 and Eq. 20. By setting U = (X̂? � X̂ + λ)−1 which keeps the same algebra in the
following text, Eq. 16 can be simplified as follows,

∇XL = F(−2U2 � (X̂?)2 � Ŷ)TFH∇RL. (21)

For∇YL, we can write it as

∇YL = (
∂R

∂Y
)T∇RL

= ((C(X)HC(X) + λI)−1C(X)H)T∇RL.
(22)

Similarly, we can get
∇̂YL = U� X̂? � ∇̂RL

∇YL = F−1(∇̂YL).
(23)

For∇λL, we can write it as

∇λL = (
∂R

∂λ
)T∇RL. (24)

After derivation of λ of both side of Eq. 17 and simple algebra, we have

R + (C(X)HC(X) + λI)
∂R

∂λ
= 0

∂R

∂λ
= −(C(X)HC(X) + λI)−1R

∂R

∂λ
= −(C(X)HC(X) + λI)−2C(X)HY.

(25)
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Similarly, we can get
∇̂λR = −U2 � X̂? � Ŷ

∇λL = F−1(∇̂λR)T∇RL

ˆ∂R

∂λ
= −U2 � X̂? � Ŷ

∇λL = F−1(
ˆ∂R

∂λ
)T∇RL.

(26)

Gradients of Elefusion layer
Considering Eq. (1), during back propagation, given ∇SL, we aim to calculate∇SlL and∇ΥlL.
For∇SlL, we have

∇SlL = (
∂S

∂Sl
)T∇SL = Υl �∇SL. (27)

For∇ΥlL, we have

∇ΥlL = (
∂S

∂Υl
)T∇SL = Sl �∇SL. (28)

Gradients of Crop layer For Crop layer, during back propagation, we know ∇Zt
L, ∇OL, ∇GL and aims to calcu-

late ∇SL. Here, we use the similar solution of pooling operation that puts the value of ∇Zt
L, ∇OL, ∇GL directly to

corresponding locations in S.

1.3. Training details

Our dynamic Siamese network is actually a recurrent neural network (RNN) that produces an output at each time step
and has recurrent connection from output to the input. It is difficult to train such network with a long video which needs
huge storage space during training to store the gradients of each parameter at each time step. Thus, we use short videos
that only have 10 frames as training data. Besides, we use the Matconvnet [4] as the training platform which is designed to
train convolution neural network (CNN). To make Matconvnet suitable for training DSiam with the short videos, we unfold
the RNN for 10 frames. Thus, each frame corresponds to a DSiam network; all DSiam networks share their parameters. In
summary, we construct an unfold network that contains 940 layers with only 33 filters that need to be learnt.

We construct the short video dataset based on ILSVRC-2015 video dataset [3] which contains 4417 videos. We first select
1130 videos from ILSVRC-2015 by removing the video whose target has large size ratio and occupy the most of a frame.
Then, we randomly generate 1000 short videos from the 1130 videos. For each short video, i.e. {It|t = 1, ..., 10}, we know
ground truth at each frame, i.e. {bt|t = 1, ..., 10} with bt being the bounding box indicating the location of target. During
training, given b1, we first perform a forward process and get 10 response maps {St|t = 1, ..., 10}. Then, we construct
ground truth of these response maps according to {bt|t = 1, ..., 10} and get {Jt|t = 1, ..., 10}. Jt have the same size with
St and indicates the true target location in St with 1 being target and -1 being background. Then, {St|t = 1, ..., 10} and
{Jt|t = 1, ..., 10} are used to generate Loss at each frame and to activate the backward process. We set batch size as 1, i.e. a
short video, and learning rate being 10−7 to 10−9, weight decay 0.0005 and momentum 0.9.

2. Experimental Results
2.1. Validation of joint training

We evaluate our DSiamM with and without joint training on OTB-2013 dataset. As shown in Fig. 2, with joint training,
DSiamM get better tracking performance on both overlap and location error metrics. Specifically, As shown in Fig. 3, the
first example shows that DSiamM with joint training is able to locate target with tighter bounding box; the second case shows
that DSiamM with joint training captures the motorcycle while the DSiamM without jointing training fails, which shows
that joint training helps to adapt target appearance change better. Since we make an initial exploration to train such network
with video dataset, we believe that we could achieve better performance by carefully selecting train dataset and using more
effective training strategy.
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Figure 2. The success plot and precious plot of DSiamM with joint training (DSiamM) and DSiamM without joint training (DSiamMwith-
outJ) on OTB-2013 dataset. The numbers in the legend indicate the representative precisions at 20 pixels for precision plots, and the area
under curve scores for success plots.

0 20 40 60 80 100 120 140 160 180

Frame Number

0

0 5.

1

Io
U

Sequence motorRolling:

DSiamMwithoutJ

DSiamM

DSiamMwithoutJ

DSiamM

... ...... ...

... ...... ...

Figure 3. Two examples of DSiamM with joint training (DSiamM) and DSiamM without joint training (DSiamMwithourJ). DSiamM
get more accurate target location than DSiamMwithoutJ in the ‘fish’ sequence; DSiamM captures the motorcycle while DSiamMwithoutJ
misses the target at the beginning in the ‘motorRolling’ sequence.

2.2. Validation of V and W

In the submitted manuscript, we have shown that tracker based on DSiam network achieves better performance by using
target appearance variation transformation, i.e. V, and background suppression transformation, W. Here, we further validate
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Figure 4. Validation of target appearance variation transformation, i.e. V, and background suppression transformation, i.e. W, according
the Euclidean distance between deep features. We take the ‘Skiing’ sequence in OTB dataset as an example. Left subfigure shows the
tracking results and Euclidean distance of four cases during tracking, which demonstrates that two transformations help to adapt to target
appearance changes and suppress background interference. Right subfigure shows the O1, Ot, Gt and Ḡt, when t = 25.

the function of V and W by comparing the similarity changes of deep features after transformation. Specifically, we take a
challenge video as an example, i.e. ‘Skiing’ sequence in OTB dataset, in which the target changes significantly. During track-
ing, we calculate the similarity between the deep features of O1 and Ot via Euclidean distance, i.e. Dist(f l1(O1), f l1(Ot)),
where Dist(·) denotes the Euclidean distance. Meanwhile, we also calculate the similarity after performing V transforma-
tion, i.e. Dist(Vl1 ∗ f l1(O1), f l1(Ot)). As shown in Fig. 4, with target appearance variation transformation, the transformed
deep feature (Vl1 ∗ f l1(O1)) is more similar to the deep feature of target at tth frame (f l1(Ot)) than f l1(O1) during the
whole tracking process, which makes our tracker be able to adapt the target changes and capture target even through it
changes significantly. Similarity, for background suppression transformation, as shown in Fig. 4, the transformed deep fea-
ture (Wl1 ∗ f l1(Gt)) is more similar to the deep feature of Ḡt than f l1(Gt), which demonstrates that background suppression
transformation does help to suppress the background interference and makes our tracker to get better tracking accuracy, as
shown in the discussion part of submitted manuscript.

2.3. Challenge cases

We add 4 challenge videos collected from website to show that our tracker is able to track target even through the targets
are surrounded by cluttered background or change significantly. We compare DSiamM with SiamFC [1] and HCF [2]. In
the sequences of ‘Dancer’ and ‘Player’, SiamFC misses the target and track the object being similar with the target, since it
does not consider the target appearance variation and background interference. HCF captures the target without adapting to
the scale changes and runs much slower than SiamFC and DSiamM. DSiamM achieves better tracking accuracy than other
two methods with target variation and background suppression transformation. In the sequences of ‘Fighting’ and ‘Forest
Gump’, the target changes significantly, i.e. the target at following frame is entirely different from the template given at the
first frame. SiamFC and HCF fail to capture targets. In contrast, DSiamM still tracks the target in these challenge situations.
We have shown the whole tracking process of the four cases with ‘*.avi’ files in the attached supplementary.
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Figure 5. Two challenge videos in which target is surrounded by clustered background and similar objects.
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