
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Dynamic Siamese Network for Visual Object Tracking
Supplementary Document

Anonymous ICCV submission

Paper ID 688

In this supplementary, we first add three important interpretations of our Dynamic Siamese network, which elaborates the
details of network architecture and training implementation. Then, we validate the effective of proposed training strategy and
online transformations.

1. Dynamic Siamese Network
We train our dynamic Siamese (DSiam) network on ILSVRC-2015 video dataset that has no overlap with popular bench-

marks [1]. Thus, there is no overfitting risk to train DSiam network. Furthermore, We can construct DSiam network on multi
layers of any feasible generally- or particularly-trained CNNs.

1.1. Multi-layer network architecture

We have shown and introduced DSiam network on single layer in our submitted manuscript. Here, we show the multi-
layer DSiam in Fig. 1. To make it easy to understand, we denote four main parts of single-layer DSiam as ‘var’, ‘Lvar’, ‘sup’
and ‘Lsup’. As shown in left subfigure of Fig. 1, ‘var’ means the target appearance variation transformation, i.e. T̃ = V ∗T;
‘sup’ denotes the background suppression transformation, i.e. F̃z = W ∗ Fz; ‘Lvar’ and ‘Lsup’ represent processes of
learning V and W, respectively. For two-layer DSiam, each layer is equipped with the four parts, i.e. ‘var’, ‘Lvar’, ‘sup’
and ‘Lsup’, as shown in the right subfigure of Fig. 1 and produces a response map Sl1 or Sl2 . Then, two response maps are
fused via an elementwise fusion layer denoted as ‘Elefusion’ and defined as,

S =
∑

l∈{l1,l2}

Υl � Sl, (1)

where
∑
l∈{l1,l2}Υl = 1. Υl is learnt through joint training.

Dynamic Siamese network shown in Fig. 1 is actually a tracking process. Thus, to training such network is to find a good
tracker. Specifically, at the beginning, the first frame I1 is cropped to get the target template O1 that is resized to 127× 127
via ‘Crop’ layer. Then, we extract deep features of O1 and get f l1(O1) and f l2(O1). Here, we use the SiamFC as the
neural network with l1 and l2 being conv5 and conv4, respectively. Note, our framework could also utilize other networks,
as demonstrated in experiment part, DSiam could also get good performance with pre-trianed Vgg19 network. At frame t,
an input frame It passes through ‘Crop’ layer and is cropped to get a search region, i.e. Zt, that is centered at the maximum
value of St−1 and is resized to 255 × 255. Then, we get f l1(Zt) and f l2(Zt) and transform these two deep features through
background suppression transformations, i.e. ‘sup’ in Fig. 1. Meanwhile, f l1(O1) and f l2(O1) are transformed through target
appearance variation transformation, i.e. ‘var’ in Fig. 1. The transformed deep features of O1 and Zt are used to perform
correlation and get the response maps Sl1 and Sl2 , which are fused via Eq. (1) and get St. After tracking, we can use St to
get target template at frame t, i.e. Ot, and region Gt centered at Ot but having the same size with Zt. Then, we get Ḡt that
mainly contain the target by multiplying Gt with a Gaussian weight map via ‘Eltwise’ layer. With deep features of Ot and
O1, we learn the V via ‘Lvar’ in Fig. 1. With deep features of G and Ḡ, we learn the W via ‘Lsup’ in Fig. 1.

1.2. Back propagation of new layers

In following, we introduce how to propagate gradients w.r.t. Loss in new layers appeared in DSiam, including RLR layer,
CirConv layer, Elefusion layer and Crop layer.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. Dynamic Siamese networks. Left subfigure shows the DSiam on single layer, in which we use four abbreviations to denote four
processes. ‘var’ represents the target appearance variation transformation, i.e. T̃ = V ∗ T; ‘Lvar’ denotes process of learning variation
transformation, i.e. V; ‘sup’ is the background suppression transformation, i.e. F̃z = W ∗ Fz; ‘Lsup’ denotes the process of learning
background suppression transformation, i.e. W. Right subfigure shows the DSiam on two layers. Each layer is equipped with four
processes denoted above to produce a response map. Then, two response maps are fused through an elementwise fusion layer denoted by
‘Eltfusion’.

For RLR and CirConv layers, we use vector as an example which can be extended to tensor case. Given two vectors
X ∈ <n×1 and Y ∈ <n×1, we aim to calculate a transformation matrix R ∈ <n×1 to make X similar to Y, i.e.

Y = R ∗X, (2)

where ‘∗’ is the circular convolution. Thus, Eq. (2) is denoted as the CirConv layer. R can be solved by

R = arg min
R

‖R ∗X−Y‖2 + λ‖R‖2, (3)

where λ is to control the regularization degree and is regarded as a parameter during training. Thus, Eq. (3) represents the
RLR layer.

Gradients of CirConv layer
Considering Eq. (2), during back propagation, given ∇YL, we aim to calculate∇XL and ∇RL, respectively.
For ∇XL, we can write it as

∇XL = (
∂Y

∂X
)T∇YL, (4)

where ∂Y
∂X ∈ <

n×n is the Jacobian matrix. Furthermore, we can rewrite the circular convolution as matrix multiplication
form and get

Y = R ∗X = C(X)TR = C(R)TX, (5)

where C(X) is to output a circulant matrix each row of which is the shift version of X. Then, we can get

∂Y

∂X
= C(R)T. (6)

Thus, we have
∇XL = C(R)∇YL. (7)

Considering the fact that all circulant matrices can be diagonalized by the Discrete Fourier Transform (DFT), C(R) can be
expressed as

C(R) = Fdiag(R̂)FH, (8)

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where F is a constant matrix which is irrelevant to R, R̂ denotes the DFT of R, and we have R̂ = F (R) and F (R) =√
nFR Eq. 4 is equivalent to

FH∇XL = FH(Fdiag(R̂)FH)∇YL

= FHFdiag(R̂)FH∇YL

= diag(R̂)FH∇YL,

(9)

afterwards, by simple algebra as follows

(FH∇XL)H = (diag(R̂)FH∇YL)H,

(∇XL)HF = (∇YL)HFdiag(R̂),

(∇XL)TF = (∇YL)TFdiag(R̂),

((∇XL)TF)T = ((∇YL)TFdiag(R̂))T,

F∇XL = diag(R̂)F∇YL.

(10)

Hence, Eq. 9 is equivalent to
∇̂XL = diag(R̂)∇̂YL. (11)

We may go one step further, since the product of a diagonal matrix and a tensor is just their element-wise product,

∇̂XL = R̂� ∇̂YL, (12)

where ∇̂XL denotes the fourier form of∇XL.
Finally, we get∇XL

∇XL = F−1(∇̂XL). (13)

Similarly, we can also get ∇̂RL and ∇RL,
∇̂RL = X̂� ∇̂YL

∇RL = F−1(∇̂YL).
(14)

The gradient results of ∇RL and ∇XL in our submitted manuscript are represented in a wrong way. Eq. (14) and Eq. (13)
should be the final results.

Gradients of RLR layer
When the above ‘*’ circulant product, Eq. 3 has a close-form solution as follows,

R = (C(X)HC(X) + λI)−1C(X)HY, (15)

where I denotes the identity matrix.
Considering Eq. 15, during back propagation, given∇RL, we aim to calculate∇XL, ∇YL and∇λL.
For∇XL, we can write it as

∇XL = (
∂X̂

∂X
)T∇X̂L

=
√

nF∇X̂L

=
√

nF(
∂R̂

∂X̂
)T∇R̂L

=
√

nF(
∂R̂

∂X̂
)T

1√
n

FH∇RL

= F(
∂R̂

∂X̂
)TFH∇RL,

(16)

where F is a constant matrix, X̂ denotes the DFT of X, and we have X̂ = F (X) =
√
nFX.

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

For ∂R̂
∂X̂

, similar to Eq. 9, we can get

R̂ =
X̂? � Ŷ

X̂? � X̂ + λ
. (17)

We then set X̂ = a + bi where a,b ∈ <n×1, thus Eq. 17 can be written as

R̂ =
(a− bi)� Ŷ

a2 + b2 + λ
. (18)

Then we can get
∂R̂

∂a
= diag(−2a� (a− bi)� Ŷ

(a2 + b2 + λ)2
+

Ŷ

a2 + b2 + λ
),

∂R̂

∂b
= diag(−2b� (a− bi)� Ŷ

(a2 + b2 + λ)2
− Ŷi

a2 + b2 + λ
),

(19)

afterwards,
∂R̂

∂X̂
= (

∂a

∂X̂
)T
∂R̂

∂a
+ (

∂b

∂X̂
)T
∂R̂

∂b

=
∂R̂

∂a
− ∂R̂

∂b
i

= −2diag(
(a− bi)� (a− bi)� Ŷ

(a2 + b2 + λ)2
)

= −2diag(
(X̂?)2 � Ŷ

(X̂? � X̂ + λ)2
).

(20)

Thus, ∇XL can be achieved by Eq. 16 and Eq. 20. By setting U = (X̂? � X̂ + λ)−1 which keeps the same algebra in the
following text, Eq. 16 can be simplified as follows,

∇XL = F(−2U2 � (X̂?)2 � Ŷ)TFH∇RL. (21)

For∇YL, we can write it as

∇YL = (
∂R

∂Y
)T∇RL

= ((C(X)HC(X) + λI)−1C(X)H)T∇RL.
(22)

Similarly, we can get
∇̂YL = U� X̂? � ∇̂RL

∇YL = F−1(∇̂YL).
(23)

For∇λL, we can write it as

∇λL = (
∂R

∂λ
)T∇RL. (24)

After derivation of λ of both side of Eq. 17 and simple algebra, we have

R + (C(X)HC(X) + λI)
∂R

∂λ
= 0

∂R

∂λ
= −(C(X)HC(X) + λI)−1R

∂R

∂λ
= −(C(X)HC(X) + λI)−2C(X)HY.

(25)

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Similarly, we can get
∇̂λR = −U2 � X̂? � Ŷ

∇λL = F−1(∇̂λR)T∇RL

ˆ∂R

∂λ
= −U2 � X̂? � Ŷ

∇λL = F−1(
ˆ∂R

∂λ
)T∇RL.

(26)

Gradients of Elefusion layer
Considering Eq. (1), during back propagation, given ∇SL, we aim to calculate∇SlL and∇ΥlL.
For∇SlL, we have

∇SlL = (
∂S

∂Sl
)T∇SL = Υl �∇SL. (27)

For∇ΥlL, we have

∇ΥlL = (
∂S

∂Υl
)T∇SL = Sl �∇SL. (28)

Gradients of Crop layer For Crop layer, during back propagation, we know ∇Zt
L, ∇OL, ∇GL and aims to calcu-

late ∇SL. Here, we use the similar solution of pooling operation that puts the value of ∇Zt
L, ∇OL, ∇GL directly to

corresponding locations in S.

1.3. Training details

Our dynamic Siamese network is actually a recurrent neural network (RNN) that produces an output at each time step
and has recurrent connection from output to the input. It is difficult to train such network with a long video which needs
huge storage space during training to store the gradients of each parameter at each time step. Thus, we use short videos
that only have 10 frames as training data. Besides, we use the Matconvnet [4] as the training platform which is designed to
train convolution neural network (CNN). To make Matconvnet suitable for training DSiam with the short videos, we unfold
the RNN for 10 frames. Thus, each frame corresponds to a DSiam network; all DSiam networks share their parameters. In
summary, we construct an unfold network that contains 940 layers with only 33 filters that need to be learnt.

We construct the short video dataset based on ILSVRC-2015 video dataset [3] which contains 4417 videos. We first select
1130 videos from ILSVRC-2015 by removing the video whose target has large size ratio and occupy the most of a frame.
Then, we randomly generate 1000 short videos from the 1130 videos. For each short video, i.e. {It|t = 1, ..., 10}, we know
ground truth at each frame, i.e. {bt|t = 1, ..., 10} with bt being the bounding box indicating the location of target. During
training, given b1, we first perform a forward process and get 10 response maps {St|t = 1, ..., 10}. Then, we construct
ground truth of these response maps according to {bt|t = 1, ..., 10} and get {Jt|t = 1, ..., 10}. Jt have the same size with
St and indicates the true target location in St with 1 being target and -1 being background. Then, {St|t = 1, ..., 10} and
{Jt|t = 1, ..., 10} are used to generate Loss at each frame and to activate the backward process. We set batch size as 1, i.e. a
short video, and learning rate being 10−7 to 10−9, weight decay 0.0005 and momentum 0.9.

2. Experimental Results
2.1. Validation of joint training

We evaluate our DSiamM with and without joint training on OTB-2013 dataset. As shown in Fig. 2, with joint training,
DSiamM get better tracking performance on both overlap and location error metrics. Specifically, As shown in Fig. 3, the
first example shows that DSiamM with joint training is able to locate target with tighter bounding box; the second case shows
that DSiamM with joint training captures the motorcycle while the DSiamM without jointing training fails, which shows
that joint training helps to adapt target appearance change better. Since we make an initial exploration to train such network
with video dataset, we believe that we could achieve better performance by carefully selecting train dataset and using more
effective training strategy.

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. The success plot and precious plot of DSiamM with joint training (DSiamM) and DSiamM without joint training (DSiamMwith-
outJ) on OTB-2013 dataset. The numbers in the legend indicate the representative precisions at 20 pixels for precision plots, and the area
under curve scores for success plots.

0 20 40 60 80 100 120 140 160 180

Frame Number

0

0 5.

1

Io
U

Sequence motorRolling:

DSiamMwithoutJ

DSiamM

DSiamMwithoutJ

DSiamM

...

...

Figure 3. Two examples of DSiamM with joint training (DSiamM) and DSiamM without joint training (DSiamMwithourJ). DSiamM
get more accurate target location than DSiamMwithoutJ in the ‘fish’ sequence; DSiamM captures the motorcycle while DSiamMwithoutJ
misses the target at the beginning in the ‘motorRolling’ sequence.

2.2. Validation of V and W

In the submitted manuscript, we have shown that tracker based on DSiam network achieves better performance by using
target appearance variation transformation, i.e. V, and background suppression transformation, W. Here, we further validate

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Validation of target appearance variation transformation, i.e. V, and background suppression transformation, i.e. W, according
the Euclidean distance between deep features. We take the ‘Skiing’ sequence in OTB dataset as an example. Left subfigure shows the
tracking results and Euclidean distance of four cases during tracking, which demonstrates that two transformations help to adapt to target
appearance changes and suppress background interference. Right subfigure shows the O1, Ot, Gt and Ḡt, when t = 25.

the function of V and W by comparing the similarity changes of deep features after transformation. Specifically, we take a
challenge video as an example, i.e. ‘Skiing’ sequence in OTB dataset, in which the target changes significantly. During track-
ing, we calculate the similarity between the deep features of O1 and Ot via Euclidean distance, i.e. Dist(f l1(O1), f l1(Ot)),
where Dist(·) denotes the Euclidean distance. Meanwhile, we also calculate the similarity after performing V transforma-
tion, i.e. Dist(Vl1 ∗ f l1(O1), f l1(Ot)). As shown in Fig. 4, with target appearance variation transformation, the transformed
deep feature (Vl1 ∗ f l1(O1)) is more similar to the deep feature of target at tth frame (f l1(Ot)) than f l1(O1) during the
whole tracking process, which makes our tracker be able to adapt the target changes and capture target even through it
changes significantly. Similarity, for background suppression transformation, as shown in Fig. 4, the transformed deep fea-
ture (Wl1 ∗ f l1(Gt)) is more similar to the deep feature of Ḡt than f l1(Gt), which demonstrates that background suppression
transformation does help to suppress the background interference and makes our tracker to get better tracking accuracy, as
shown in the discussion part of submitted manuscript.

2.3. Challenge cases

We add 4 challenge videos collected from website to show that our tracker is able to track target even through the targets
are surrounded by cluttered background or change significantly. We compare DSiamM with SiamFC [1] and HCF [2]. In
the sequences of ‘Dancer’ and ‘Player’, SiamFC misses the target and track the object being similar with the target, since it
does not consider the target appearance variation and background interference. HCF captures the target without adapting to
the scale changes and runs much slower than SiamFC and DSiamM. DSiamM achieves better tracking accuracy than other
two methods with target variation and background suppression transformation. In the sequences of ‘Fighting’ and ‘Forest
Gump’, the target changes significantly, i.e. the target at following frame is entirely different from the template given at the
first frame. SiamFC and HCF fail to capture targets. In contrast, DSiamM still tracks the target in these challenge situations.
We have shown the whole tracking process of the four cases with ‘*.avi’ files in the attached supplementary.

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5. Two challenge videos in which target is surrounded by clustered background and similar objects.

References
[1] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional siamese networks for object tracking. In

arXiv preprint arXiv:1606.09549, 2016. 1, 7
[2] C. Ma, J. B. Huang, X. Yang, and M. H. Yang. Hierarchical convolutional features for visual tracking. In ICCV, 2015. 7
[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#688

ICCV
#688

ICCV 2017 Submission #688. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. Two challenge videos in which target changes significantly during tracking.

L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015. 5
[4] A. Vedaldi and K. Lenc. Matconvnet c convolutional neural networks for matlab. In ACM MM, 2015. 5

9

