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ABSTRACT—Optical Coherence Tomography (OCT) imaging system has been widely used in

biomedical field. However, the speckle noise in the OCT image prevents the application of this

technology. The validity of existing contourlet-based denoising methods has been demonstrated. In the

contourlet transform, the directional information contained by spatial domain is reflected in the

corresponding sub-bands, while the noise is evenly distributed to each sub-band, resulting in a big

difference among the coefficients’ distribution of sub-bands. The traditional algorithms do not take these

features into account, and only use uniform threshold shrinkage function to each sub-band, which limits

the denoising effect. In this paper, a novel direction statistics approach is proposed to build a directional

weight model in the spatial domain based on image gradient information to represent the effective edge

information of different sub-bands, and this weight is introduced into threshold function for denoising.

The experiments prove the effectiveness of this method. The proposed denoising framework is applied

in contourlet soft threshold and bivariate threshold denoising algorithms for a large number of OCT

images, and the results of these experiments show that the proposed algorithm effectively reduces noise

while preferably preserves edge information.

Key Words: Optical Coherence Tomography (OCT) Image; Image Denoising; Contourlet Transform;
Directional Statistics of Image

1. INTRODUCTION

Optical coherence tomography (OCT) has played an important role in the biomedical field. However, the

ubiquitous speckle noise prevents the further study of OCT image. Several algorithms have been proposed

in some literatures to handle the speckle noise. The denoising effect of the spatial domain methods, such as

Lee filter and RKT filter which blurs the edge easily while dealing with an image of OCT, is not satisfied

[1,2]. In the frequency domain methods, Adler et al. first used the adaptive wavelet threshold denoising

algorithm to realize the OCT retinal image denoising [3]. In the algorithm, for the horizontal structure of

OCT retinal images, a more effective denoising is achieved by using an artificial setting parameter to

control the threshold in vertical sub-band. The main idea of the algorithm is that the OCT retinal image

contains less vertical direction information and the noise ratio in wavelet vertical sub-band is larger, so the

vertical sub-and need a larger threshold to improve the denoising effect. However, the algorithm will be

invalid while handling the images of multi-direction. The review of the OCT image denoising methods

indicated that the wavelet-based threshold denoising algorithm does better in OCT image denoising while

preserving edges [1][4].
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However, the wavelet transform is lack of directionality and can only characterize the horizontal,

vertical and diagonal information of an image. This limits the denoising effect of wavelet-based algorithms,

especially for the images with multi-direction. Do and Vetterli proposed the contourlet transform to realize

the directionality and anisotropy in image representation [5]. Po and Do studied the inter-scale and intra-

scale dependency of the contourlet coefficients and proposed the contourlet Hidden Markov Tree (HMT) to

realize image denoising [6]. Guo et al. proposed bivariate shrinkage function based contourlet transform by

considering the coefficient dependency between sub-bands to realize the OCT image denoising. Other

contourlet-based image denoising algorithms are introduced in [8–11]. However, the state of the art

contourlet-based image denoising algorithms are mainly an extension of the wavelet denoising algorithm

and only use a unified shrinkage function for all of the directional sub-bands, without considering the

coefficient distribution difference of each directional sub-band. This cannot take advantage of the

directionality and anisotropy of the contourlet transform and limits the denoising effect of the contourlet-

based denoising methods.

According to the above problems, this paper proposes a novel contourlet threshold denoising

framework for OCT image, which takes the difference of direction sub-bands into account through

direction statistic information. In detail, a direction statistic approach based on image gradient information

is proposed to get the direction weights which represent the difference between sub-bands. This method is

discussed by experiments. Then, the direction statistic information in the form of weights will be

introduced to threshold function so as to achieve more effective denoising effect. The paper does not

propose a new threshold function but focuses on discussing a new threshold denoising framework, and it

will be applied to a variety of threshold denoising methods to improve the algorithm widely.

The organization of this paper is as follows. Section 2 further describes the main idea of the paper by

experiments. Section 3 introduces the proposed direction statistic approach and the direction weight model,

and its performance is experimentally discussed. Section 4 presents a novel contourlet based framework

and elaborates the implementation steps of the algorithm. Section 5 applies the proposed algorithm

framework to contourlet soft and bivariate threshold denoising algorithm, and takes experiments of OCT

retinal image and OCT chick embryo heart tube image respectively. The denoising effect and evaluation

metrics prove that the algorithm greatly improves original contourlet threshold denoising algorithms and

better preserves the edge information.

2. PROBLEMS ILLUSTRATING

This section demonstrates that the image direction information reflects the valid information of different

direction sub-bands in the contourlet domain, and this feature has not been considered in the existing

contourlet threshold algorithms, thus limiting the denoising effect. Add multiplicative noise to three images

which contain different number of direction, as are shown in Figure 1. (a) - (c). Performing four scales and

eight directions contourlet decomposition to the three images, the results of the third scale are shown in

Figure 1. (d) - (f). According to the principle of contourlet transform, if one image only contains edge

information in one direction as shown in Figure 1, image (a). Then edge information will be mainly

distributed in the corresponding direction sub-band in contourlet domain. However, the noise does not have

directivity and is distributed in all direction sub-bands as shown in Figure 1, image (d). If the image

contains multi-direction information which can be reflected in the corresponding sub-bands, the process

causes a big difference between different direction sub-bands. And the difference can be reflected by the

direction information.

With each sub-band containing different amount of valid information, using a larger threshold value

can achieve more effective denoising for the direction sub-band which contains much more noise.

So parameters can be introduced to control the threshold value of sub-bands. The above experimental
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results show that the direction information in the spatial domain can reflect the amount of valid information

of each direction sub-band, so the parameters can be gotten by direction information in the spatial domain.

This paper is dedicated to finding a better statistic approach to reflect the direction information of the

image, and introduce the results in the form of weight to different direction sub-bands in the contourlet

domain so as to achieve better denoising result.

3. DIRECTION STATISTICAL APPROACH AND DIRECTION WEIGHT

To extract direction statistical information of an image, this section proposes and discusses a gradient

information based direction statistical method. This method uses gradient direction to classify multi-

directionally and perform gather statistics. Furthermore, two diagonal kernels are added into the process to

reduce the effect of noise. Experimental results show that the method does well in extracting the direction

information, and the statistical results accord with the actual feature of the image. Then, the statistical results

are used to build the weight vector representing the difference between sub-bands in contourlet domain.

3.1 Image gradient information based direction statistical approach

Using the image gradient direction to classify gradient value and perform statistic has been widely applied

to the target recognition and feature extraction in the detection domain, such as Edge Orientation

Histogram (EOH) [12], gradient Histogram Orientation [13], etc. Levi and Weiss proposed Dominant

Orientation Feature based on the EOH feature [14]. Inspired by their works, this section proposes the image

gradient information based direction statistical method. The method is introduced as follows:

Step 1: do convolution to the image by using four directional kernels. The directional kernel can be

described as Equation (1). After convolution, each pixel of the original image corresponds to four

Figure 1. (a)-(c) three noisy images containing different number of direction, (d)-(f) the third scale contourlet decomposition results

of (a)-(c) respectively.
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convolution values as shown in the Equation (2). In fact, Grad1, Grad2 are the gradient operators, and their

convolution results with the original image are defined as the gradient.

Grad1 ¼ ½21; 0; 1�; Grad2 ¼ ½1; 0;21�T; Grad3 ¼
21 0 0

0 0 0

0 0 1

2
664

3
775; Grad4 ¼

0 0 1

0 0 0

21 0 0

2
664

3
775 ð1Þ

Convk ¼ Gradk*I k ¼ 1; 2; 3; 4 ð2Þ
Step 2: calculate the variance of four convolution results of each pixel to get a variance matrix Var, and

set a threshold value for the variance. If the variance of a pixel is greater than the threshold value, the pixel

is labeled as edge point. Otherwise, the point is considered to be noise or the point in the flat region. Since

the noise points and points of flat region have no directivity, the variance of those points is smaller.

Actually, this process defines the edge of the image, which can be shown in Equation (3). Tvar can be

calculated by the optimal threshold method mentioned in [15] as

Iedgeðx; yÞ ¼
1 if Varðx; yÞ $ Tvar

0 if Varðx; yÞ , Tvar

(
ð3Þ

Step 3: get the gradient magnitude G (x, y) and the gradient direction u (x, y) of each pixel (x, y), which
are defined in Equation (4) and (5). The following equation omits location identifier (x, y)

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Conv21 þ Conv22

q
ð4Þ

u ¼ arctanðConv2=Conv1Þ ð5Þ
Step 4: for the unsigned direction range, segment the range uniformly into Ndir parts, namely

Bini(i ¼ 1, . . . ,Ndir). For the pixel (x,y), if its gradient direction u (x, y) is in the range of Bini, set the point
(x, y) in ith matrix SubIi equal to the production of gradient magnitude G (x, y) and Iedge(x, y). And Ndir

refers to the number of statistical directions. This process is presented as

SubIiðx; yÞ ¼
Iedgeðx; yÞ�Gðx; yÞ uðx; yÞ [ Bini

0 uðx; yÞ � Bini

(
i [ 1; . . . ;Ndir ð6Þ

Step 5: sum up each matrix SubIi to obtain an Ndir-dimensional vector called Val including all

directional statistics, and the gradient magnitude of each pixel is regarded as the statistical weights.

Valð1; iÞ ¼
X

ðx;yÞ[SubIi

SubIiðx; yÞ ð7Þ

Use the above method to execute statistics to Figure 1, image (a) -(c), which contains different number

of directions. Set Ndir ¼ 8, and the results are showed in Figure 2, image (a) - (c); the edge detection

results defined in (3) are showed in Figure 2, images (d) - (f). Experimental results indicate that this method

can well express edge information of the noisy image. Also, the results of directional statistics accord with

the actual image and direction sub-bands in the contourlet domain.
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3.2 Direction weight model

The statistic vector Val of Ndir directions can be obtained from above method. The vector represents the

directional distribution of the whole image. As is showed in Figure 2, image (a), the results show that the

direction of the whole image mainly distributed in the horizontal direction represented by Bin6,7. This is in

accord with the results of actual Figure 1 image (a) and the distribution of directional sub-band information

in contourlet domain, Figure 1 image (d). Other statistical results have similar conclusions. Section 2

describes that the direction information of the image can reflect different sub-bands’ valid information in

contourlet domain, so the obtained directional statistic vector Val can be used to reflect the difference

among directional sub-bands. The weight vector is known as wv and defined in Equation (8).

wvð1; viÞ ¼ Valð1; viÞPNdir
i Valð1; iÞ vi ¼ 1; . . . ;Ndir ð8Þ

Equation (8) illustrates that the larger the frequency of one direction is, the larger the weight it has, and

the more the effective edge information this directional sub-band contains. So it’s reasonable to use the

weight vector wv to control the threshold of each direction sub-band.

4. DIRECTION WEIGHT BASED CONTOURLET TRANSFORM THRESHOLD
DENOISING FRAMEWORK

The key of basic contourlet threshold denoising method is to derive an effective threshold function. The

existing functions were put forward based on considering the contourlet domain coefficients’ characteristics.

Figure 2. (a)-(c) statistic results of Figure 1, image (a)-(c). (d)-(f) edge detection results of Figure 1, image (a)-(c).
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The commonly used threshold denoising methods at present are: hard-threshold function, soft threshold

function, bivariate threshold function etc. The commonly process for OCT image denoising is: (1) perform

logarithm transform to the original OCT image to transform the multiplicative noise into additive noise; (2)

make contourlet transform on the image; (3) Substitute the coefficients within the contourlet into the

threshold function and estimate the noise-free coefficients; (4) make contourlet and logarithmic inverse

transform to get the denoised image.

However, in the method described above, the threshold function is built by considering the

characteristics of coefficients in the contourlet domain. For example, [6] discusses the correlation of the

general neighbour coefficients in the contourlet domain, but it doesn’t consider the threshold function from

the global image features, for example the distribution of the direction information. The experiment in

section 2 indicates that the distribution of information on the direction of the image affects the amount of

valid information of each sub-band. Thus, this paper proposes a contourlet threshold denoising algorithm

based on direction weights, which introduces the direction weight into the threshold function to improve the

denoising effect. The directionweight is deduced from themethod introduced in section 3. Figure 3 shows the

overall framework. Y, X, N respectively means the original image, the ideal noiseless signal and noise; y,w,

e, respectively corresponds to the noisy, ideal noiseless and noise coefficient in the contourlet domain; T() is

the threshold function, ŵ is the estimated noiseless coefficient, and X̂ is the final denoised image. Details are

as follows:

Step 1: Perform logarithm and contourlet transform to the noisy image I. I can be defined as Equation

(9). The result after transformation can be described as Equation (10).

Y ¼ XN ð9Þ

yij ¼ wij þ 1ij ð10Þ
where i and j are the decomposition level and the direction sub-band.

Step 2: In the ith decomposition level, the number of direction sub-bands is Ndiri. Use the method

proposed in section 3 to get the direction weight Wv,i of the image in spatial domain with the input Ndiri.

Step 3: Build the threshold function according to methods proposed in [6,7].

Step 4: use Equation (11) to handle each coefficient in the decomposition level i and direction sub-band

j, and do the same to other sub-bands and decomposition levels.

v̂i;j ¼ c

wv;ið1; jÞ þ 1

� �
�Tðyi;jÞ ð11Þ

where c is a constant to control the extent of the weight.

Step 5: perform contourlet and logarithm inverse transform to the denoised contourlet coefficients and

get the denoised image.

5. EXPERIMENTS AND EVALUATION

In order to verify the effectiveness of the proposed method, apply the above framework to the contourlet

soft threshold denoising algorithm and bivariate threshold denoising algorithm separately. Use a large

number of OCT images as the experimental images, including the OCT heart tube images [16], retinal

images [18] and so on. Contrast experiments are performed among the following denoising algorithms:

wavelet threshold bivariate denoising (WTB) [17], contourlet soft thresholding (CTSoft) [5], contourlet

threshold bivariate denoising algorithm (CTB) [7], contourlet soft thresholding based on the direction

weight (CTSoftDW) and contourlet threshold bivariate denoising based on the direction weight (CTBDW).
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The following three metrics are used to evaluate the experimental results.

SNR ¼ 20 lg
mm

sb

ð12Þ

CNRm ¼ 10 lg
mm 2 mbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
m þ s2

b

p ð13Þ

ENLm ¼ m2
m

s2
m

ð14Þ

where um and sm are the mean and standard deviation of the m-th target region, and ub and sb are the mean

and standard deviation of the background. CNR measures the contrast between an image feature region and

Figure 3. Proposed threshold denoising framework.
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the background noise; ENL measures the smoothness of a homogeneous region. The denoising results of

five images of the experimental images are showed in Figure 4 and Table I. The three values corresponding

to each image are the mean values of selected ROI metrics, while the ENL values are the mean values of

homogeneous regions. Experimental results indicate that the proposed method greatly improves the

denoising effect compared with existing contourlet denoising algorithms.

6. CONCLUSIONS

This paper proposes a direction weight based contourlet transform denoising framework for OCT image,

aiming to take the sub-band diversity in contourlet domain into account, which is not considered in present

Figure 4. (a)-(e) results of five OCT images after handling with five kinds of denoising algorithms. The first column is the original

image, in which the broken line is the ROI for evaluation, and the solid box represents the background noise. Column 2–6 shows the

results of various denoising algorithms, and each algorithm appears in the upper left corner.

Table I. The SNR, CNR and ENL values of five OCT images through five kinds of denoising algorithms.

Orig WTB CTSoft CTB CTSoftDW CTBDW

OCT1 SNR 15.89 20.54 20.19 20.97 22.24 22.13

CNR 3.68 4.78 4.75 4.96 5.13 5.12

ENL 6.60 15.43 18.37 20.84 23.57 23.75

OCT2 SNR 16.15 19.50 20.30 20.90 22.12 22.07

CNR 3.95 4.84 4.98 5.15 5.42 5.42

ENL 6.55 15.24 23.41 25.99 32.21 32.21

OCT3 SNR 24.11 25.06 25.54 25.78 26.33 26.27

CNR 6.45 6.64 6.68 6.77 6.86 6.83

ENL 43.18 74.61 71.76 73.04 82.34 81.24

OCT4 SNR 18.44 19.28 19.80 20.09 20.51 20.41

CNR 6.46 6.75 6.87 6.94 7.01 7.02

ENL 26.51 44.98 41.19 42.47 46.23 45.74

OCT5 SNR 20.93 21.87 22.36 22.52 23.28 23.21

CNR 5.99 6.21 6.32 6.34 6.47 6.45

ENL 18.59 25.12 26.43 26.88 29.63 29.30
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algorithms. In detail: (1) a directional statistic method based on the gradient information of the image is

proposed. This method has good anti-noise performance, which can effectively extract the directional

information from noisy OCT images; (2) the paper realizes a new framework to enhance the contourlet soft

and bivariate threshold denoising algorithms by introducing the directional information in the form of

weight into contourlet domain threshold function. The result of experiment shows that the proposed

algorithm can effectively improve the traditional contourlet threshold denoising algorithms, and performs

better in denoising OCT images.
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