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Abstract: Optical coherence tomography (OCT) is becoming an increasingly important imaging technology in the Biomedical
field. However, the application of OCT is limited by the ubiquitous noise. In this study, the noise of OCT heart tube image is first
verified as being multiplicative based on the local statistics (i.e. the linear relationship between the mean and the standard
deviation of certain flat area). The variance of the noise is evaluated in log-domain. Based on these, a joint probability
density function is constructed to take the inter-direction dependency in the contourlet domain from the logarithmic
transformed image into account. Then, a bivariate shrinkage function is derived to denoise the image by the maximum a
posteriori estimation. Systemic comparative experiments are made to synthesis images, OCT heart tube images and other
OCT tissue images by subjective assessment and objective metrics. The experiment results are analysed based on the
denoising results and the predominance degree of the proposed algorithm with respect to the wavelet-based algorithm. The
results show that the proposed algorithm improves the signal-to-noise ratio, whereas preserving the edges and has more
advantages on the images containing multi-direction information like OCT heart tube image.
1 Introduction

Optical coherence tomography (OCT) is used to image the
structure and function of the developing embryonic avian
heart [1]. It is a non-invasive and contact-free technology
that can deliver high resolution images. Therefore it
becomes an ideal imaging technique to study the
formation of the chicken heart tube [2]. However, since a
coherent detection is needed to extract the weak signal in
a wide dynamic range, the OCT signal is subject to the
speckle noise: the image quality is degraded because of
the grainy appearance and obscuring small-intensity
features [3]. This limits the subsequent application of the
OCT images, for example image segmentation,
registration, restoration and three-dimensional (3D)
reconstruction. Therefore image denoising is a key step for
the study of the chicken heart tube with the OCT
technology. The noise model is the basic component to
deduce a reasonable denoising algorithm, [4] indicated that
the introduction of the noise statistical information is able
to obtain a better denoising algorithm. As a result, it is
important to discuss the noise model of OCT heart tube
image to obtain an effective denoising method, which will
be discussed in Section 2.
In respect to OCT image denoising methods, space domain

methods improve the OCT heart tube image quality to certain
extent while the edges are always blurred. For example Lee
filter [5], rotating Kernel transformation (RKT) filter [6],
weighted median filter [7] are used to denoising the OCT
image. However, the denoising effects are limited [4, 8].
In the frequency domain, the wavelet transform is an
important method for image denoising because of its
excellent time-frequency characteristics [9–13]. Adler et al.
[9] proposed an OCT image denoising algorithm by
combining the wavelet-based method with a special spatial
structure of the OCT image, such as the horizontal
structures of OCT retinal images. Deng and Liang [10]
proposed a wavelet-based OCT image denoising method
based on the bivariate shrinkage function [11]. So far, the
regions of interesting (ROIs) of the images being studied by
the aforementioned methods are mostly around the
boundary of two fields, and the attention was specially paid
to horizontal edges, such as the OCT retinal images [9, 10].
However, there are more types of objects or ROIs in OCT
heart tube images, as shown in Fig. 1a. The wavelet
transform lacks directionality and can only represent
horizontal, vertical and diagonal information of the image.
For denoising other types of structures as shown in Fig. 1a,
a more flexible orientation-adaptive transform method is
highly needed.
Candes and Donoho proposed the curvelet transform that

can capture the intrinsic geometrical structures such as
curved edges in an image [14]. The method was improved
and applied to image denoising by Starck et al. [15] and
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Fig. 1 Flat ROIs in nine OCT heart tube images and the relationship between their corresponding mean and standard deviation

a Flat regions selected from nine OCT heart tube images
b Mean and standard deviation of the selected regions
The mean and standard deviation fit a linear relationship, as shown in Fig. 1b

www.ietdl.org
was introduced to OCT image denoising by Jian et al. [16].
Inspired by the curvelet transform, Do and Vetterli
proposed the contourlet transform for image expansion [17].
Compared with the wavelet and curvelet transform, the
contourlet transform offers a high degree of directionality
and anisotropy and does a better job in the image
expansion. There have since then been many applications
employing the contourlet transform for denoising various
types of images [17–22]. However, according to the
reviews in [4, 8], there have been few literatures studying
the OCT image denoising based on the contourlet
transform. In addition, Po and Do revealed the strong
inter-direction dependency among contourlet coefficients
[20]. This means that the thresholding rules for
contourlet-based denoising should take the inter-direction
dependency into account.
In this paper, we focus on denoising the OCT heart tube

image without layered structure as shown in Fig. 1a. The
paper is organised as follows. Section 2 experimentally
verifies that the noise of OCT heart tube images is
multiplicative instead of additive and evaluates the statistic
of noise in log-domain. Section 3 introduces our new OCT
image denoising algorithm based on the contourlet
transform and the exploration of the coefficient
inter-direction dependency. The experimental results in
Section 4 show that the proposed algorithm outperforms all
aforementioned algorithms, especially for the images
containing multi-direction like OCT heart tube image.
Moreover, finally Section 5 draws conclusions and
summarises the future work. The parts of preliminary works
are published in [23].

2 Noise analysis of OCT heart tube images

The noise estimation is of importance to denoising algorithm
and is directly related to the type of the noise, several
literatures have discussed the method of estimating noise
[24–26]. The speckle noise in OCT image is usually
regarded as multiplicative noise [11]. However, few papers
IET Image Process., 2013, Vol. 7, Iss. 5, pp. 442–450
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have verified this in detail. In this section, we provide
experimental evidence to prove that the noise of OCT heart
tube image is indeed multiplicative. Thus, the logarithmic
transform can be performed on the OCT image to obtain an
additive noise model which can be handled more effectively
than the multiplicative model. Moreover, the standard
deviation of the additive noise is derived in the log-domain.

2.1 Noise model of OCT heart tube image

Let the noise model of OCT be as follows

y = xn (1)

where y is the observed image, x is the noiseless image and n
is the noise. In order to verify this noise model, the statistics
of flat areas in the OCT heart tube image are discussed. The
mean and the variance of y in flat areas can be obtained by
assuming the independence between x and n, as shown in
the following equations

�y = �x�n = k�x (2)

var(y) = Ey2 − (Ey)2 = E x2
[ ]

E n2
[ ]− �x2�n2 (3)

where k is the mean of the noise n. For flat areas, var(x) ≃ 0,
and we obtain

E x2
[ ] = var(x)+ (Ex)2 ≃ �x2 (4)

Substitute (4) and (2) into (3), we obtain

var(y) = E n2
[ ]− �n2

( )
�x2 = s2

n�x
2 = s2

n�y
2/k2 (5)

Then the standard deviation of noise σn can be obtained as
follows

sn = k
�������
var(y)

√
/�y (6)
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If the OCT heart tube images meet the assumption of (1), the
standard deviation and mean of the flat areas are in a linear
relationship, and the ratio should be σn/k. In order to verify
this relationship, the standard deviation and mean of the flat
areas selected from ten OCT heart tube images are
calculated and presented in Figs. 1a and b. Fig. 1a contains
nine of the selected images. Using a straight line to fit the
points in Fig. 1b, we can obtain the slope of the line, that
is, the ratio of standard deviation σn and mean k of the
noise. The experiment illustrates that the standard deviation
and mean of flat areas are indeed in a linear relationship.
This evidently indicates that the noise of the OCT heart
tube image is multiplicative.

2.2 Additive noise model in log-domain

Since many denoising algorithms were proposed based on the
additive noise model, the multiplicative noise is transformed
to additive noise through the logarithmic transform and
analysed in detail as follows

ln(y) = ln(xn) = ln(x)+ ln(n) (7)

The noise in log-domain can be written as

h = ln(n) (8)

The equation above can be rewritten as function of (n–k)

h = ln (n) = ln
n− k

k
+ 1

( )
k = ln

n− k

k
+ 1

( )
+ ln k (9)

The expression (9) can be extended into a (n–k) power series
with Taylor expansion

h ≃ n− k

k
+ ln k (10)

Then we can obtain

Eh = En− k

k
+ ln k = ln k (11)

var(h) = var
n− k

k
+ ln k

( )
= s2

n/k
2 (12)

Let the mean of the multiplicative noise k be 1 (which is a
reasonable hypothesis because the mean of multiplicative k
is the reflectance ratio of the OCT system), we can obtain
Eη = 0 and var(h) = s2

n. Furthermore, we assume that the
noise of OCT heart tube image has a Gaussian distribution
of (0, σn) in the log-domain.

3 Denoising method based on bivariate
shrinkage function in contourlet domain

In this section, the bivariate shrinkage function is derived
exploiting inter-direction dependency in contourlet domain.
The inter-direction dependency shows the relationship
between the reference coefficient (the coefficient we want to
handle) and its cousin coefficient (the coefficient at the
same scale and spatial location but in another different
direction). The empirical joint distribution of the
reference-cousin contourlet coefficient pairs is investigated
and modelled by a non-Gaussian probability density
444
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function (PDF). Finally, a bivariate shrinkage function is
derived and used to reduce the noise of OCT heart tube
image.

3.1 Joint distribution model of contourlet
coefficients

After logarithmic transform and contourlet transform, we
obtain

y1 = w1 + 11 (13)

y2 = w2 + 12 (14)

where y1 and y2 are the observations of the noisy coefficient
and its cousin, respectively; wi and ɛi are the noiseless
coefficient and the noise element in contourlet domain,
respectively.
The high signal-to-noise ratio (SNR) and approximate

noiseless OCT images in [27] are used to reveal the
empirical joint distribution of reference-cousin contourlet
coefficient pairs shown in Figs. 2a and b . The distribution
has a high peak value and long trailing and apparently does
not fit to the Gaussian distribution model. We use a
non-Gaussian PDF as (15) to model the above joint
distribution shown in Figs. 2c and d

pw(w) =
K

2ps2
exp −

��
3

√

s

���������
w2
1 + w2

2

√( )
(15)

where K is a constant which represents the amplitude of the
distribution showed in Fig. 2c and σ is the standard
deviation of noiseless coefficients.

3.2 Inter-direction dependency-based shrinkage
function

Combining (13) and (14), we obtain

y = w+ 1 (16)

where y = (y1, y2), w = (w1, w2), ɛ = (ɛ1, ɛ2).
The standard maximum a posteriori (MAP) estimation for

w given y is

ŵ(y) = argmax
w

pw|y(w|y) (17)

According to the Bayesian rule, (17) can be rewritten as

ŵ(y) = argmax
w

py|w(y|w)pw(w)

= argmax
w

p1(y− w)pw(w)
(18)

As shown in (18), in order to calculate the estimation of w, the
PDF of the noise is required. In Section 2, the type, mean and
standard deviation of the noise in OCT heart tube image have
been discussed in the log-domain. The noise still obeys a
Gaussian distribution of (0, σn) after performing the
contourlet transform. Its PDF can be written as

p1(1) =
1

2ps2
n
exp − 121 + 122

2s2
n

( )
(19)
IET Image Process., 2013, Vol. 7, Iss. 5, pp. 442–450
doi: 10.1049/iet-ipr.2013.0127



Fig. 2 Empirical and bivariate PDF based joint distributions for the contourlet coefficients

a Empirical joint reference-cousin histogram of contourlet coefficients
b and d 2D cross-sections of Figs. 2a and c, respectively
c Bivariate PDF proposed for joint PDF to simulate Fig. 2a is defined in (15)
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Equations (15) and (19) are used to deduce the evaluate of
noiseless coefficient, the result can be written as (20) and
(21). The detailed derivation can be found in [11]

ŵ1 =
��������
y21 + y22

√
− ��

3
√

s2
n/s

( )( )
+��������

y21 + y22
√ y1 (20)

where (see (21))
��������
y21 + y22

√
−

��
3

√
s2
n

s

( )
+
=

0,

��������
y21 + y22

√
−

⎧⎪⎪⎨
⎪⎪⎩
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3.3 OCT image denoising algorithm

Using the shrinkage function deduced above to reduce the
noise of the OCT heart tube image in coutourlet domain,
the steps are shown as follows:
(a) Apply sequentially the logarithmic transform and the
contourlet transform on the OCT heart tube image.
(b) Obtain the cousin coefficient y2 corresponding to the
reference coefficient y1.
(c) Calculate σn using the method explained in Section 2.
if
��������
y21 + y22

√
,

��
3

√
s2
n

s��
3

√
s2
n

s
, if

��������
y21 + y22

√
.=

��
3

√
s2
n

s

(21)
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(d) Obtain the standard deviation using the

equations =
�������������
(s2

y1
− s2

n)+
√

, where σy1 is the standard

deviation of the neighbour coefficients of y1.
(e) Substitute the above parameters into (20) and obtain w1 of
each noisy contourlet coefficient.
(f) Obtain the denoised image by applying sequentially the
inverse contourlet transform and the exponential transform.

4 Experiments and analysis

In this section, systemic comparisons with several denoising
approaches are made through three metrics, namely SNR,
contrast-to-noise ratio (CNR) and equivalent number of
look (ENL).
In order to make a further analysis about the advantage of

the proposed algorithm over the existed classic algorithms,
the synthetic images with noise and OCT heart tube images
serve as experiment images and are grouped into two parts,
one is made up by the images only containing horizontal
structure, another consists of the images with
multi-direction structures. The analysis of the experiment
results will be made according to value of metrics,
denoising effect and the predominance degree over classic
denoising methods. The denoising experiment of OCT
retinal images is also made to show the expanding
application of the proposed method.

4.1 Evaluation metrics

The three metrics are defined as

SNR = 20 lg
mm

sb
(22)

CNRm = 10 lg
mm − mb����������
s2
m + s2

b

√ (23)

ENLm = m2
m

s2
m

(24)

where um and σm are the mean and standard deviation of the
mth ROI, and ub and σb are the mean and standard deviation
of the background (region without object but just noise),
Fig. 3 The noisy synthetic images

a and b Two synthetic images added multiplicative noise with the Gaussian distrib
The dotted boxes marked by ‘ROIi’ are the regions of interest, the solid box mark
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respectively. CNR measures the contrast between an image
feature points and the background noise. ENL is a measure
of the smoothness of a homogeneous ROI [11].

4.2 Comparison and analysis of denoising
algorithm

The proposed and existing classic denoising algorithms are
used to denoise the experiment images. The metrics and
denoising results are calculated and analysed, respectively.

4.2.1 Denoising experiments: (A) Synthetic image
denoising: RKT filter [6] , Lee filter [5], wavelet denosing
algorithm based on bivariate function [11], contourlet
soft-thresholding algorithm [17] and the proposed method
are used to denoise the synthetic images added
multiplicative Gaussian noise of mean 1 and variance 0.5,
shown in Figs. 3a and b. The window size used in space
domain methods is 3 × 3. Fig. 3a mainly contains horizontal
structure, Fig. 3b contains multi-direction edges. In the
figures, the dotted box labelled by ‘ROIi’ are the regions of
interest (ROI) which are used to calculate the metrics,
where ROI1–3 are the flat regions and ROI4–6 are the edge
regions, the region labelled by ‘noise’ is the background
region. Figs. 4a and b display the denoising results of
Figs. 3a and b via the mentioned algorithms which are
shown on the top of Fig. 4. Figs. 4c and d show the metrics
of denoised images, corresponding to the metrics of five
denoised images of (a) and (b), respectively.
(B) OCT heart tube image denoising: According to the
experiment method used in (A), we perform the same
process to the OCT heart tube images shown in Figs. 5a
and b. Fig. 5a is the tissue out of heart tube, mainly
containing horizontal structure; Fig. 5b is heart tube image,
containing multi-direction edges. Fig. 6 shows the
denoising results and their corresponding metrics.

4.2.2 Analysis of denoising results: (A) Overview
analysis: According to the denoising results shown in
Figs. 4a,b and 6a,b, comparing with the space domain
methods, the frequency domain methods do better in
denoising, especially the contourlet-based algorithms. The
metrics shown in Figs. 4c,d and 6c,d further demonstrate the
ution of (1, 0.05)
ed by ‘noise’ are the region of noise

IET Image Process., 2013, Vol. 7, Iss. 5, pp. 442–450
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Fig. 4 Denoising results and metric values of each algorithms for synthetic images

a and b Denoised images of Figs. 3a and b using different algorithms
c and d are the SNR, CNR and ENL values of images shown in Figs. 4a and b
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advantage of the proposed algorithm: the proposed method
effectively improves the SNR of original image and achieves
better value than wavelet-based method in all experiment
images; in respect of CNR, the advantage of proposed
method is not prominent; In respect of ENL, the proposed
method has greater advantages in the flat regions, that is
ROI1–3, which indicates that the proposed method can
preserve the smoothness of homogeneous regions. In general,
since the contourlet transform can represent the image in a
sparser way than wavelet transform, the contourlet-based
denoising methods can achieve better results.
(B) Difference of advantages: This part discusses the
predominance degree of the proposed method and
contourlet soft-thresholding method relative to the
wavelet-based method in images containing different
IET Image Process., 2013, Vol. 7, Iss. 5, pp. 442–450
doi: 10.1049/iet-ipr.2013.0127
direction structure, that is, Figs. 3a,b and 5a,b. Because the
SNR reflects the noise level of image effectively, the
difference of SNR improved by different algorithms is used
to represent the predominance degree. The analysis results
are shown in Fig. 7, the legend is known as ‘name of
denoising image_name of algorithm used’. For example
‘FIG3a_Proposed’ means the SNR gain of the proposed
method with respect to the wavelet-based method in
processing the synthetic image shown in Fig. 3a. The
contourlet soft-thresholding algorithm is labelled as ‘CTSoft’.

As it shown in Fig. 7a, the ‘FIG3b_Proposed’ is nearly 3
dB larger than ‘FIG3a_Proposed’; ‘FIG3b_CTSoft’ and
‘FIG3a_CTSoft’ have the same result. Fig. 7b indicates that
447
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Fig. 5 Two OCT heart tube images

a Is the tissue out of heart tube
b Is the hear tube image, the centre of the image is the heart tube containing various information of different directions

Fig. 6 Denoising results and metric values of all algorithms for OCT heart tube images

a and b are the denoised images of Figs. 5a and b using different algorithms
c and d are the SNR, CNR and ENL values of images shown in Figs. 6a and b

www.ietdl.org
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Fig. 7 Predominance degree of two contourlet-based algorithms relative to the wavlet-based algorithm about SNR

a SNR difference of the denoised images of Figs. 3a and b using the contourlet-based algorithms and the wavelet-based algorithm
b SNR difference of the denoised images of Figs. 5a and b using the contourlet-based algorithms and the wavelet-based algorithm
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‘FIG5b_Proposed’ is nearly 1 dB larger than ‘FIG5a_
Proposed’, as do ‘FIG5b_CTSoft’ and ‘FIG5a_CTSoft’. So
we can come to conclusion as follows:

1. In all experiment images, the contourlet-based methods
achieve better denoising results than wavelet-based method.
However, the advantages are greater in the images
containing multi-direction structures, that is, Figs. 3b and 5b.
2. In all ROIs of an image, the advantages over
wavelet-based method are almost the same, which indicates
that the advantages are stable.

In general, because of the multi-direction of contourlet
transform, the proposed algorithm will have better
Fig. 8 Denoising results of the OCT retinal images

a and c are the denoised images of three OCT retinal images using different algor
d Graphs from left to right are the SNR values of denoised images shown in Figs.
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denoising effect when handling the images containing
multi-direction. However, the wavelet transform can
decompose image into three directions, that is horizontal,
vertical and diagonal direction. As a result, the advantage of
proposed method mainly due to the sparsity of contourlet
transform when handling the images only containing
horizontal (or vertical, diagonal) direction.
(C) Further analysis: The paper proposes a bivariate function
based on inter-direction dependency to achieve threshold
denoising in contourlet domain. In order to demonstrate the
validity of this method, we introduce the contourlet soft
thresholding denoising algorithm to perform a comparison.
The denoising results shown in Figs. 4a,b and 6a,b indicate

that both methods improve the quality of experiment images
efficiently. However, the metrics shown in Figs. 4c,d and 6c,d
ithms
8a–c, respectively
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and the difference of advantages shown in Fig. 7 illustrate that
the proposed method do better in improving SNR and
smoothness of the original noisy images, which dues to
taking the inter-direction dependency into account.

4.3 Other OCT images denoising experiment

Using algorithms mentioned above to denoise the OCT retinal
images which are downloaded from http://www.optos.com/,
the results are shown in Fig. 8. The results illustrate the
advantages of proposed method again.

5 Summary and future work

In this paper, the noise of OCT heart tube image is analysed
and the variance of the noise in log-domain is derived. The
contourlet transform of OCT heart tube image is
investigated and a non-Gaussian PDF model is constructed
based on the inter-direction dependency. A bivariate
shrinkage function is obtained by using MAP and is further
used to reduce the noise of OCT heart tube image in
contourlet domain. The experiment results demonstrate the
superior performance of the new method compared with
previous approaches.
A basic assumption of the proposed algorithm is that the

noise of OCT heart tube image is modelled by a single
Gaussian. However, the speckle is not only noise source but
also signal vehicle [28]. Therefore one of the future works
is to study the noise in more detail for a more accurate
noise model.
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